incomplete ground and space shading

This commit is contained in:
Evert Prants 2020-03-31 16:32:59 +03:00
parent 46026ab9b9
commit 5565be120c
Signed by: evert
GPG Key ID: 1688DA83D222D0B5
5 changed files with 161 additions and 19 deletions

15
assets/shaders/planet.fs Normal file
View File

@ -0,0 +1,15 @@
precision mediump float;
uniform float g;
uniform float g2;
uniform sampler2D texture0;
varying vec3 c0;
varying vec3 c1;
varying vec2 vUV;
void main (void) {
vec3 diffuse = texture2D(texture0, vUV).xyz;
gl_FragColor = vec4(c1, 1.0) + vec4(diffuse * c0, 1.0);
}

91
assets/shaders/planet.vs Normal file
View File

@ -0,0 +1,91 @@
precision mediump float;
attribute vec3 aVertexPosition;
attribute vec3 aNormal;
attribute vec2 aTexCoords;
uniform vec3 v3CameraPosition; // The camera position
uniform vec3 v3LightPosition; // The direction vector to the light source
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fCameraHeight; // The camera's current height
uniform float fCameraHeight2; // fCameraHeight^2
uniform float fOuterRadius; // The outer (atmosphere) radius
uniform float fOuterRadius2; // fOuterRadius^2
uniform float fInnerRadius; // The inner (planetary) radius
uniform float fInnerRadius2; // fInnerRadius^2
uniform float fKrESun; // Kr * ESun
uniform float fKmESun; // Km * ESun
uniform float fKr4PI; // Kr * 4 * PI
uniform float fKm4PI; // Km * 4 * PI
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
const int nSamples = 3;
const float fSamples = 3.0;
varying vec3 c0;
varying vec3 c1;
varying vec3 vNormal;
varying vec2 vUV;
uniform mat4 uModelMatrix;
uniform mat4 uViewMatrix;
uniform mat4 uProjectionMatrix;
float scale(float fCos) {
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main(void) {
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
vec3 v3Ray = aVertexPosition - v3CameraPosition;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
float B = 2.0 * dot(v3CameraPosition, v3Ray);
float C = fCameraHeight2 - fOuterRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
float fNear = 0.5 * (-B - sqrt(fDet));
// Calculate the ray's starting position, then calculate its scattering offset
vec3 v3Start = v3CameraPosition + v3Ray * fNear;
fFar -= fNear;
float fDepth = exp((fInnerRadius - fOuterRadius) / fScaleDepth);
float fCameraAngle = dot(-v3Ray, aVertexPosition) / length(aVertexPosition);
float fLightAngle = dot(v3LightPosition, aVertexPosition) / length(aVertexPosition);
float fCameraScale = scale(fCameraAngle);
float fLightScale = scale(fLightAngle);
float fCameraOffset = fDepth*fCameraScale;
float fTemp = (fLightScale + fCameraScale);
// Initialize the scattering loop variables
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
vec3 v3Attenuate;
for(int i=0; i<nSamples; i++)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fScatter = fDepth*fTemp - fCameraOffset;
v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
// Calculate the attenuation factor for the ground
c0 = v3Attenuate;
c1 = v3FrontColor * (v3InvWavelength * fKrESun + fKmESun);
gl_Position = uProjectionMatrix * uViewMatrix * uModelMatrix * vec4(aVertexPosition,1);
vUV = aTexCoords;
vNormal = aNormal;
}

View File

@ -10,18 +10,15 @@ class Atmosphere extends MeshInstance {
this.innerRadius = innerRadius
this.wavelength = wavelength
this.Kr = 0.0025
this.Km = 0.0020
this.Kr = 0.0020
this.Km = 0.0010
this.ESun = 20.0
this.g = -0.950
this.scaleDepth = 0.25
this.mieScaleDepth = 0.1
}
draw (gl, shader, camera, sun, sky) {
// Set model transform matrix uniform
gl.uniformMatrix4fv(shader.getUniformLocation(gl, 'uModelMatrix'), false, this.transform)
setUniforms (gl, shader, camera, sun) {
const camHeight = vec3.length(subv3(camera.pos, this.pos))
const invWavelength = [1 / Math.pow(this.wavelength[0], 4), 1 / Math.pow(this.wavelength[1], 4), 1 / Math.pow(this.wavelength[2], 4)]
gl.uniform3fv(shader.getUniformLocation(gl, 'v3CameraPosition'), camera.pos)
@ -42,6 +39,12 @@ class Atmosphere extends MeshInstance {
gl.uniform1f(shader.getUniformLocation(gl, 'fScaleOverScaleDepth'), 1 / (this.outerRadius - this.innerRadius) / this.scaleDepth)
gl.uniform1f(shader.getUniformLocation(gl, 'g'), this.g)
gl.uniform1f(shader.getUniformLocation(gl, 'g2'), this.g * this.g)
}
draw (gl, shader, camera, sun) {
// Set model transform matrix uniform
gl.uniformMatrix4fv(shader.getUniformLocation(gl, 'uModelMatrix'), false, this.transform)
this.setUniforms(gl, shader, camera, sun)
// Draw the mesh
gl.enable(gl.BLEND)
@ -53,6 +56,11 @@ class Atmosphere extends MeshInstance {
this.mesh.postdraw(gl, shader)
gl.disable(gl.BLEND)
gl.cullFace(gl.BACK)
}
setupPlanetShader (gl, shader, camera, sun) {
this.setUniforms(gl, shader, camera, sun)
}
}

View File

@ -219,6 +219,39 @@ class CubePlanet {
this.faces[i].draw(gl, shader)
}
}
prepare (gl, shader) {
if (!this.material) return
this.material.apply(gl, shader)
}
static drawPlanetAtmosphere (gl, planet, atmosphere, camera, sun, atmosShader, planetShader, surfaceShader, surfaceEnvironment) {
const height = vec3.length(subv3(camera.pos, atmosphere.pos))
// Render the atmosphere
atmosShader.use(gl)
camera.draw(gl, atmosShader)
atmosphere.draw(gl, atmosShader, camera, sun)
if (height > atmosphere.innerRadius + (atmosphere.outerRadius - atmosphere.innerRadius) / 3) {
// Draw the planet from space
// TODO: maybe separate atmosphere from space and ground shaders?
planetShader.use(gl)
camera.draw(gl, planetShader)
atmosphere.setupPlanetShader(gl, planetShader, camera, sun)
planet.prepare(gl, planetShader)
planet.draw(gl, planetShader)
} else {
// Draw the planet within the atmosphere
surfaceShader.use(gl)
surfaceEnvironment.draw(gl, surfaceShader)
camera.draw(gl, surfaceShader)
planet.prepare(gl, surfaceShader)
planet.draw(gl, surfaceShader)
}
}
}
export { CubePlanet, CubeFace, PlanetGenerator }

View File

@ -30,6 +30,7 @@ async function pipeline () {
const terrainShader = await game.shaders.createShaderFromFiles(game.gl, 'terrain', false)
const skyboxShader = await game.shaders.createShaderFromFiles(game.gl, 'skybox', false)
const atmosShader = await game.shaders.createShaderFromFiles(game.gl, 'atmosphere', false)
const planetShader = await game.shaders.createShaderFromFiles(game.gl, 'planet', false)
entity.setRotation([0.0, 0.0, -90.0])
@ -97,6 +98,7 @@ async function pipeline () {
// Planet test
const planet = new CubePlanet([0.0, 0.0, 0.0], new PlanetGenerator(16, 1000, hmap))
const atmosphere = new Atmosphere([0.0, 0.0, 0.0], 1000, 1025, [0.650, 0.570, 0.475])
planet.material = material
// Update function for camera and terrain
let fpsTimer = 0
@ -157,28 +159,21 @@ async function pipeline () {
game.prepare()
// Draw the skybox
//skyboxShader.use(gl)
//skybox.draw(gl, skyboxShader, cam)
// skyboxShader.use(gl)
// skybox.draw(gl, skyboxShader, cam)
// Use terrain shader
terrainShader.use(gl)
// terrainShader.use(gl)
// Set environment variables in shader
env.draw(gl, terrainShader)
// env.draw(gl, terrainShader)
// Set the viewport uniforms
cam.draw(gl, terrainShader)
// cam.draw(gl, terrainShader)
// Draw terrain
// terrain.draw(gl, terrainShader)
// entity.draw(gl, terrainShader)
// block.draw(gl, terrainShader)
material.apply(gl, terrainShader)
planet.draw(gl, terrainShader)
atmosShader.use(gl)
cam.draw(gl, atmosShader)
atmosphere.draw(gl, atmosShader, cam, env.sun, true)
CubePlanet.drawPlanetAtmosphere(gl, planet, atmosphere, cam, env.sun, atmosShader, planetShader, terrainShader, env)
}
// Render function for the triangle