1132 lines
39 KiB
C
1132 lines
39 KiB
C
|
// Copyright 2007, Google Inc.
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// Google Test - The Google C++ Testing and Mocking Framework
|
||
|
//
|
||
|
// This file implements a universal value printer that can print a
|
||
|
// value of any type T:
|
||
|
//
|
||
|
// void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
|
||
|
//
|
||
|
// A user can teach this function how to print a class type T by
|
||
|
// defining either operator<<() or PrintTo() in the namespace that
|
||
|
// defines T. More specifically, the FIRST defined function in the
|
||
|
// following list will be used (assuming T is defined in namespace
|
||
|
// foo):
|
||
|
//
|
||
|
// 1. foo::PrintTo(const T&, ostream*)
|
||
|
// 2. operator<<(ostream&, const T&) defined in either foo or the
|
||
|
// global namespace.
|
||
|
//
|
||
|
// However if T is an STL-style container then it is printed element-wise
|
||
|
// unless foo::PrintTo(const T&, ostream*) is defined. Note that
|
||
|
// operator<<() is ignored for container types.
|
||
|
//
|
||
|
// If none of the above is defined, it will print the debug string of
|
||
|
// the value if it is a protocol buffer, or print the raw bytes in the
|
||
|
// value otherwise.
|
||
|
//
|
||
|
// To aid debugging: when T is a reference type, the address of the
|
||
|
// value is also printed; when T is a (const) char pointer, both the
|
||
|
// pointer value and the NUL-terminated string it points to are
|
||
|
// printed.
|
||
|
//
|
||
|
// We also provide some convenient wrappers:
|
||
|
//
|
||
|
// // Prints a value to a string. For a (const or not) char
|
||
|
// // pointer, the NUL-terminated string (but not the pointer) is
|
||
|
// // printed.
|
||
|
// std::string ::testing::PrintToString(const T& value);
|
||
|
//
|
||
|
// // Prints a value tersely: for a reference type, the referenced
|
||
|
// // value (but not the address) is printed; for a (const or not) char
|
||
|
// // pointer, the NUL-terminated string (but not the pointer) is
|
||
|
// // printed.
|
||
|
// void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
|
||
|
//
|
||
|
// // Prints value using the type inferred by the compiler. The difference
|
||
|
// // from UniversalTersePrint() is that this function prints both the
|
||
|
// // pointer and the NUL-terminated string for a (const or not) char pointer.
|
||
|
// void ::testing::internal::UniversalPrint(const T& value, ostream*);
|
||
|
//
|
||
|
// // Prints the fields of a tuple tersely to a string vector, one
|
||
|
// // element for each field. Tuple support must be enabled in
|
||
|
// // gtest-port.h.
|
||
|
// std::vector<string> UniversalTersePrintTupleFieldsToStrings(
|
||
|
// const Tuple& value);
|
||
|
//
|
||
|
// Known limitation:
|
||
|
//
|
||
|
// The print primitives print the elements of an STL-style container
|
||
|
// using the compiler-inferred type of *iter where iter is a
|
||
|
// const_iterator of the container. When const_iterator is an input
|
||
|
// iterator but not a forward iterator, this inferred type may not
|
||
|
// match value_type, and the print output may be incorrect. In
|
||
|
// practice, this is rarely a problem as for most containers
|
||
|
// const_iterator is a forward iterator. We'll fix this if there's an
|
||
|
// actual need for it. Note that this fix cannot rely on value_type
|
||
|
// being defined as many user-defined container types don't have
|
||
|
// value_type.
|
||
|
|
||
|
// IWYU pragma: private, include "gtest/gtest.h"
|
||
|
// IWYU pragma: friend gtest/.*
|
||
|
// IWYU pragma: friend gmock/.*
|
||
|
|
||
|
#ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|
||
|
#define GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|
||
|
|
||
|
#include <functional>
|
||
|
#include <memory>
|
||
|
#include <ostream> // NOLINT
|
||
|
#include <sstream>
|
||
|
#include <string>
|
||
|
#include <tuple>
|
||
|
#include <type_traits>
|
||
|
#include <typeinfo>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "gtest/internal/gtest-internal.h"
|
||
|
#include "gtest/internal/gtest-port.h"
|
||
|
|
||
|
namespace testing {
|
||
|
|
||
|
// Definitions in the internal* namespaces are subject to change without notice.
|
||
|
// DO NOT USE THEM IN USER CODE!
|
||
|
namespace internal {
|
||
|
|
||
|
template <typename T>
|
||
|
void UniversalPrint(const T& value, ::std::ostream* os);
|
||
|
|
||
|
// Used to print an STL-style container when the user doesn't define
|
||
|
// a PrintTo() for it.
|
||
|
struct ContainerPrinter {
|
||
|
template <typename T,
|
||
|
typename = typename std::enable_if<
|
||
|
(sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) &&
|
||
|
!IsRecursiveContainer<T>::value>::type>
|
||
|
static void PrintValue(const T& container, std::ostream* os) {
|
||
|
const size_t kMaxCount = 32; // The maximum number of elements to print.
|
||
|
*os << '{';
|
||
|
size_t count = 0;
|
||
|
for (auto&& elem : container) {
|
||
|
if (count > 0) {
|
||
|
*os << ',';
|
||
|
if (count == kMaxCount) { // Enough has been printed.
|
||
|
*os << " ...";
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
*os << ' ';
|
||
|
// We cannot call PrintTo(elem, os) here as PrintTo() doesn't
|
||
|
// handle `elem` being a native array.
|
||
|
internal::UniversalPrint(elem, os);
|
||
|
++count;
|
||
|
}
|
||
|
|
||
|
if (count > 0) {
|
||
|
*os << ' ';
|
||
|
}
|
||
|
*os << '}';
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Used to print a pointer that is neither a char pointer nor a member
|
||
|
// pointer, when the user doesn't define PrintTo() for it. (A member
|
||
|
// variable pointer or member function pointer doesn't really point to
|
||
|
// a location in the address space. Their representation is
|
||
|
// implementation-defined. Therefore they will be printed as raw
|
||
|
// bytes.)
|
||
|
struct FunctionPointerPrinter {
|
||
|
template <typename T, typename = typename std::enable_if<
|
||
|
std::is_function<T>::value>::type>
|
||
|
static void PrintValue(T* p, ::std::ostream* os) {
|
||
|
if (p == nullptr) {
|
||
|
*os << "NULL";
|
||
|
} else {
|
||
|
// T is a function type, so '*os << p' doesn't do what we want
|
||
|
// (it just prints p as bool). We want to print p as a const
|
||
|
// void*.
|
||
|
*os << reinterpret_cast<const void*>(p);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct PointerPrinter {
|
||
|
template <typename T>
|
||
|
static void PrintValue(T* p, ::std::ostream* os) {
|
||
|
if (p == nullptr) {
|
||
|
*os << "NULL";
|
||
|
} else {
|
||
|
// T is not a function type. We just call << to print p,
|
||
|
// relying on ADL to pick up user-defined << for their pointer
|
||
|
// types, if any.
|
||
|
*os << p;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
namespace internal_stream_operator_without_lexical_name_lookup {
|
||
|
|
||
|
// The presence of an operator<< here will terminate lexical scope lookup
|
||
|
// straight away (even though it cannot be a match because of its argument
|
||
|
// types). Thus, the two operator<< calls in StreamPrinter will find only ADL
|
||
|
// candidates.
|
||
|
struct LookupBlocker {};
|
||
|
void operator<<(LookupBlocker, LookupBlocker);
|
||
|
|
||
|
struct StreamPrinter {
|
||
|
template <typename T,
|
||
|
// Don't accept member pointers here. We'd print them via implicit
|
||
|
// conversion to bool, which isn't useful.
|
||
|
typename = typename std::enable_if<
|
||
|
!std::is_member_pointer<T>::value>::type,
|
||
|
// Only accept types for which we can find a streaming operator via
|
||
|
// ADL (possibly involving implicit conversions).
|
||
|
typename = decltype(std::declval<std::ostream&>()
|
||
|
<< std::declval<const T&>())>
|
||
|
static void PrintValue(const T& value, ::std::ostream* os) {
|
||
|
// Call streaming operator found by ADL, possibly with implicit conversions
|
||
|
// of the arguments.
|
||
|
*os << value;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace internal_stream_operator_without_lexical_name_lookup
|
||
|
|
||
|
struct ProtobufPrinter {
|
||
|
// We print a protobuf using its ShortDebugString() when the string
|
||
|
// doesn't exceed this many characters; otherwise we print it using
|
||
|
// DebugString() for better readability.
|
||
|
static const size_t kProtobufOneLinerMaxLength = 50;
|
||
|
|
||
|
template <typename T,
|
||
|
typename = typename std::enable_if<
|
||
|
internal::HasDebugStringAndShortDebugString<T>::value>::type>
|
||
|
static void PrintValue(const T& value, ::std::ostream* os) {
|
||
|
std::string pretty_str = value.ShortDebugString();
|
||
|
if (pretty_str.length() > kProtobufOneLinerMaxLength) {
|
||
|
pretty_str = "\n" + value.DebugString();
|
||
|
}
|
||
|
*os << ("<" + pretty_str + ">");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct ConvertibleToIntegerPrinter {
|
||
|
// Since T has no << operator or PrintTo() but can be implicitly
|
||
|
// converted to BiggestInt, we print it as a BiggestInt.
|
||
|
//
|
||
|
// Most likely T is an enum type (either named or unnamed), in which
|
||
|
// case printing it as an integer is the desired behavior. In case
|
||
|
// T is not an enum, printing it as an integer is the best we can do
|
||
|
// given that it has no user-defined printer.
|
||
|
static void PrintValue(internal::BiggestInt value, ::std::ostream* os) {
|
||
|
*os << value;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct ConvertibleToStringViewPrinter {
|
||
|
#if GTEST_INTERNAL_HAS_STRING_VIEW
|
||
|
static void PrintValue(internal::StringView value, ::std::ostream* os) {
|
||
|
internal::UniversalPrint(value, os);
|
||
|
}
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
// Prints the given number of bytes in the given object to the given
|
||
|
// ostream.
|
||
|
GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
|
||
|
size_t count, ::std::ostream* os);
|
||
|
struct RawBytesPrinter {
|
||
|
// SFINAE on `sizeof` to make sure we have a complete type.
|
||
|
template <typename T, size_t = sizeof(T)>
|
||
|
static void PrintValue(const T& value, ::std::ostream* os) {
|
||
|
PrintBytesInObjectTo(
|
||
|
static_cast<const unsigned char*>(
|
||
|
// Load bearing cast to void* to support iOS
|
||
|
reinterpret_cast<const void*>(std::addressof(value))),
|
||
|
sizeof(value), os);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct FallbackPrinter {
|
||
|
template <typename T>
|
||
|
static void PrintValue(const T&, ::std::ostream* os) {
|
||
|
*os << "(incomplete type)";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Try every printer in order and return the first one that works.
|
||
|
template <typename T, typename E, typename Printer, typename... Printers>
|
||
|
struct FindFirstPrinter : FindFirstPrinter<T, E, Printers...> {};
|
||
|
|
||
|
template <typename T, typename Printer, typename... Printers>
|
||
|
struct FindFirstPrinter<
|
||
|
T, decltype(Printer::PrintValue(std::declval<const T&>(), nullptr)),
|
||
|
Printer, Printers...> {
|
||
|
using type = Printer;
|
||
|
};
|
||
|
|
||
|
// Select the best printer in the following order:
|
||
|
// - Print containers (they have begin/end/etc).
|
||
|
// - Print function pointers.
|
||
|
// - Print object pointers.
|
||
|
// - Use the stream operator, if available.
|
||
|
// - Print protocol buffers.
|
||
|
// - Print types convertible to BiggestInt.
|
||
|
// - Print types convertible to StringView, if available.
|
||
|
// - Fallback to printing the raw bytes of the object.
|
||
|
template <typename T>
|
||
|
void PrintWithFallback(const T& value, ::std::ostream* os) {
|
||
|
using Printer = typename FindFirstPrinter<
|
||
|
T, void, ContainerPrinter, FunctionPointerPrinter, PointerPrinter,
|
||
|
internal_stream_operator_without_lexical_name_lookup::StreamPrinter,
|
||
|
ProtobufPrinter, ConvertibleToIntegerPrinter,
|
||
|
ConvertibleToStringViewPrinter, RawBytesPrinter, FallbackPrinter>::type;
|
||
|
Printer::PrintValue(value, os);
|
||
|
}
|
||
|
|
||
|
// FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a
|
||
|
// value of type ToPrint that is an operand of a comparison assertion
|
||
|
// (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in
|
||
|
// the comparison, and is used to help determine the best way to
|
||
|
// format the value. In particular, when the value is a C string
|
||
|
// (char pointer) and the other operand is an STL string object, we
|
||
|
// want to format the C string as a string, since we know it is
|
||
|
// compared by value with the string object. If the value is a char
|
||
|
// pointer but the other operand is not an STL string object, we don't
|
||
|
// know whether the pointer is supposed to point to a NUL-terminated
|
||
|
// string, and thus want to print it as a pointer to be safe.
|
||
|
//
|
||
|
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
|
||
|
|
||
|
// The default case.
|
||
|
template <typename ToPrint, typename OtherOperand>
|
||
|
class FormatForComparison {
|
||
|
public:
|
||
|
static ::std::string Format(const ToPrint& value) {
|
||
|
return ::testing::PrintToString(value);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Array.
|
||
|
template <typename ToPrint, size_t N, typename OtherOperand>
|
||
|
class FormatForComparison<ToPrint[N], OtherOperand> {
|
||
|
public:
|
||
|
static ::std::string Format(const ToPrint* value) {
|
||
|
return FormatForComparison<const ToPrint*, OtherOperand>::Format(value);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// By default, print C string as pointers to be safe, as we don't know
|
||
|
// whether they actually point to a NUL-terminated string.
|
||
|
|
||
|
#define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \
|
||
|
template <typename OtherOperand> \
|
||
|
class FormatForComparison<CharType*, OtherOperand> { \
|
||
|
public: \
|
||
|
static ::std::string Format(CharType* value) { \
|
||
|
return ::testing::PrintToString(static_cast<const void*>(value)); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t);
|
||
|
#ifdef __cpp_lib_char8_t
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char8_t);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char8_t);
|
||
|
#endif
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char16_t);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char16_t);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char32_t);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char32_t);
|
||
|
|
||
|
#undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
|
||
|
|
||
|
// If a C string is compared with an STL string object, we know it's meant
|
||
|
// to point to a NUL-terminated string, and thus can print it as a string.
|
||
|
|
||
|
#define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \
|
||
|
template <> \
|
||
|
class FormatForComparison<CharType*, OtherStringType> { \
|
||
|
public: \
|
||
|
static ::std::string Format(CharType* value) { \
|
||
|
return ::testing::PrintToString(value); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string);
|
||
|
#ifdef __cpp_lib_char8_t
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char8_t, ::std::u8string);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char8_t, ::std::u8string);
|
||
|
#endif
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char16_t, ::std::u16string);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char16_t, ::std::u16string);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char32_t, ::std::u32string);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char32_t, ::std::u32string);
|
||
|
|
||
|
#if GTEST_HAS_STD_WSTRING
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring);
|
||
|
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring);
|
||
|
#endif
|
||
|
|
||
|
#undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
|
||
|
|
||
|
// Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
|
||
|
// operand to be used in a failure message. The type (but not value)
|
||
|
// of the other operand may affect the format. This allows us to
|
||
|
// print a char* as a raw pointer when it is compared against another
|
||
|
// char* or void*, and print it as a C string when it is compared
|
||
|
// against an std::string object, for example.
|
||
|
//
|
||
|
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
|
||
|
template <typename T1, typename T2>
|
||
|
std::string FormatForComparisonFailureMessage(const T1& value,
|
||
|
const T2& /* other_operand */) {
|
||
|
return FormatForComparison<T1, T2>::Format(value);
|
||
|
}
|
||
|
|
||
|
// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
|
||
|
// value to the given ostream. The caller must ensure that
|
||
|
// 'ostream_ptr' is not NULL, or the behavior is undefined.
|
||
|
//
|
||
|
// We define UniversalPrinter as a class template (as opposed to a
|
||
|
// function template), as we need to partially specialize it for
|
||
|
// reference types, which cannot be done with function templates.
|
||
|
template <typename T>
|
||
|
class UniversalPrinter;
|
||
|
|
||
|
// Prints the given value using the << operator if it has one;
|
||
|
// otherwise prints the bytes in it. This is what
|
||
|
// UniversalPrinter<T>::Print() does when PrintTo() is not specialized
|
||
|
// or overloaded for type T.
|
||
|
//
|
||
|
// A user can override this behavior for a class type Foo by defining
|
||
|
// an overload of PrintTo() in the namespace where Foo is defined. We
|
||
|
// give the user this option as sometimes defining a << operator for
|
||
|
// Foo is not desirable (e.g. the coding style may prevent doing it,
|
||
|
// or there is already a << operator but it doesn't do what the user
|
||
|
// wants).
|
||
|
template <typename T>
|
||
|
void PrintTo(const T& value, ::std::ostream* os) {
|
||
|
internal::PrintWithFallback(value, os);
|
||
|
}
|
||
|
|
||
|
// The following list of PrintTo() overloads tells
|
||
|
// UniversalPrinter<T>::Print() how to print standard types (built-in
|
||
|
// types, strings, plain arrays, and pointers).
|
||
|
|
||
|
// Overloads for various char types.
|
||
|
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
|
||
|
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
|
||
|
inline void PrintTo(char c, ::std::ostream* os) {
|
||
|
// When printing a plain char, we always treat it as unsigned. This
|
||
|
// way, the output won't be affected by whether the compiler thinks
|
||
|
// char is signed or not.
|
||
|
PrintTo(static_cast<unsigned char>(c), os);
|
||
|
}
|
||
|
|
||
|
// Overloads for other simple built-in types.
|
||
|
inline void PrintTo(bool x, ::std::ostream* os) {
|
||
|
*os << (x ? "true" : "false");
|
||
|
}
|
||
|
|
||
|
// Overload for wchar_t type.
|
||
|
// Prints a wchar_t as a symbol if it is printable or as its internal
|
||
|
// code otherwise and also as its decimal code (except for L'\0').
|
||
|
// The L'\0' char is printed as "L'\\0'". The decimal code is printed
|
||
|
// as signed integer when wchar_t is implemented by the compiler
|
||
|
// as a signed type and is printed as an unsigned integer when wchar_t
|
||
|
// is implemented as an unsigned type.
|
||
|
GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
|
||
|
|
||
|
GTEST_API_ void PrintTo(char32_t c, ::std::ostream* os);
|
||
|
inline void PrintTo(char16_t c, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<char32_t>(c), os);
|
||
|
}
|
||
|
#ifdef __cpp_char8_t
|
||
|
inline void PrintTo(char8_t c, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<char32_t>(c), os);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// gcc/clang __{u,}int128_t
|
||
|
#if defined(__SIZEOF_INT128__)
|
||
|
GTEST_API_ void PrintTo(__uint128_t v, ::std::ostream* os);
|
||
|
GTEST_API_ void PrintTo(__int128_t v, ::std::ostream* os);
|
||
|
#endif // __SIZEOF_INT128__
|
||
|
|
||
|
// The default resolution used to print floating-point values uses only
|
||
|
// 6 digits, which can be confusing if a test compares two values whose
|
||
|
// difference lies in the 7th digit. So we'd like to print out numbers
|
||
|
// in full precision.
|
||
|
// However if the value is something simple like 1.1, full will print a
|
||
|
// long string like 1.100000001 due to floating-point numbers not using
|
||
|
// a base of 10. This routiune returns an appropriate resolution for a
|
||
|
// given floating-point number, that is, 6 if it will be accurate, or a
|
||
|
// max_digits10 value (full precision) if it won't, for values between
|
||
|
// 0.0001 and one million.
|
||
|
// It does this by computing what those digits would be (by multiplying
|
||
|
// by an appropriate power of 10), then dividing by that power again to
|
||
|
// see if gets the original value back.
|
||
|
// A similar algorithm applies for values larger than one million; note
|
||
|
// that for those values, we must divide to get a six-digit number, and
|
||
|
// then multiply to possibly get the original value again.
|
||
|
template <typename FloatType>
|
||
|
int AppropriateResolution(FloatType val) {
|
||
|
int full = std::numeric_limits<FloatType>::max_digits10;
|
||
|
if (val < 0) val = -val;
|
||
|
|
||
|
if (val < 1000000) {
|
||
|
FloatType mulfor6 = 1e10;
|
||
|
if (val >= 100000.0) { // 100,000 to 999,999
|
||
|
mulfor6 = 1.0;
|
||
|
} else if (val >= 10000.0) {
|
||
|
mulfor6 = 1e1;
|
||
|
} else if (val >= 1000.0) {
|
||
|
mulfor6 = 1e2;
|
||
|
} else if (val >= 100.0) {
|
||
|
mulfor6 = 1e3;
|
||
|
} else if (val >= 10.0) {
|
||
|
mulfor6 = 1e4;
|
||
|
} else if (val >= 1.0) {
|
||
|
mulfor6 = 1e5;
|
||
|
} else if (val >= 0.1) {
|
||
|
mulfor6 = 1e6;
|
||
|
} else if (val >= 0.01) {
|
||
|
mulfor6 = 1e7;
|
||
|
} else if (val >= 0.001) {
|
||
|
mulfor6 = 1e8;
|
||
|
} else if (val >= 0.0001) {
|
||
|
mulfor6 = 1e9;
|
||
|
}
|
||
|
if (static_cast<int32_t>(val * mulfor6 + 0.5) / mulfor6 == val) return 6;
|
||
|
} else if (val < 1e10) {
|
||
|
FloatType divfor6 = 1.0;
|
||
|
if (val >= 1e9) { // 1,000,000,000 to 9,999,999,999
|
||
|
divfor6 = 10000;
|
||
|
} else if (val >= 1e8) { // 100,000,000 to 999,999,999
|
||
|
divfor6 = 1000;
|
||
|
} else if (val >= 1e7) { // 10,000,000 to 99,999,999
|
||
|
divfor6 = 100;
|
||
|
} else if (val >= 1e6) { // 1,000,000 to 9,999,999
|
||
|
divfor6 = 10;
|
||
|
}
|
||
|
if (static_cast<int32_t>(val / divfor6 + 0.5) * divfor6 == val) return 6;
|
||
|
}
|
||
|
return full;
|
||
|
}
|
||
|
|
||
|
inline void PrintTo(float f, ::std::ostream* os) {
|
||
|
auto old_precision = os->precision();
|
||
|
os->precision(AppropriateResolution(f));
|
||
|
*os << f;
|
||
|
os->precision(old_precision);
|
||
|
}
|
||
|
|
||
|
inline void PrintTo(double d, ::std::ostream* os) {
|
||
|
auto old_precision = os->precision();
|
||
|
os->precision(AppropriateResolution(d));
|
||
|
*os << d;
|
||
|
os->precision(old_precision);
|
||
|
}
|
||
|
|
||
|
// Overloads for C strings.
|
||
|
GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
|
||
|
inline void PrintTo(char* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const char*>(s), os);
|
||
|
}
|
||
|
|
||
|
// signed/unsigned char is often used for representing binary data, so
|
||
|
// we print pointers to it as void* to be safe.
|
||
|
inline void PrintTo(const signed char* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
||
|
}
|
||
|
inline void PrintTo(signed char* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
||
|
}
|
||
|
inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
||
|
}
|
||
|
inline void PrintTo(unsigned char* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const void*>(s), os);
|
||
|
}
|
||
|
#ifdef __cpp_char8_t
|
||
|
// Overloads for u8 strings.
|
||
|
GTEST_API_ void PrintTo(const char8_t* s, ::std::ostream* os);
|
||
|
inline void PrintTo(char8_t* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const char8_t*>(s), os);
|
||
|
}
|
||
|
#endif
|
||
|
// Overloads for u16 strings.
|
||
|
GTEST_API_ void PrintTo(const char16_t* s, ::std::ostream* os);
|
||
|
inline void PrintTo(char16_t* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const char16_t*>(s), os);
|
||
|
}
|
||
|
// Overloads for u32 strings.
|
||
|
GTEST_API_ void PrintTo(const char32_t* s, ::std::ostream* os);
|
||
|
inline void PrintTo(char32_t* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const char32_t*>(s), os);
|
||
|
}
|
||
|
|
||
|
// MSVC can be configured to define wchar_t as a typedef of unsigned
|
||
|
// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
|
||
|
// type. When wchar_t is a typedef, defining an overload for const
|
||
|
// wchar_t* would cause unsigned short* be printed as a wide string,
|
||
|
// possibly causing invalid memory accesses.
|
||
|
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
|
||
|
// Overloads for wide C strings
|
||
|
GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
|
||
|
inline void PrintTo(wchar_t* s, ::std::ostream* os) {
|
||
|
PrintTo(ImplicitCast_<const wchar_t*>(s), os);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Overload for C arrays. Multi-dimensional arrays are printed
|
||
|
// properly.
|
||
|
|
||
|
// Prints the given number of elements in an array, without printing
|
||
|
// the curly braces.
|
||
|
template <typename T>
|
||
|
void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
|
||
|
UniversalPrint(a[0], os);
|
||
|
for (size_t i = 1; i != count; i++) {
|
||
|
*os << ", ";
|
||
|
UniversalPrint(a[i], os);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Overloads for ::std::string.
|
||
|
GTEST_API_ void PrintStringTo(const ::std::string& s, ::std::ostream* os);
|
||
|
inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
|
||
|
PrintStringTo(s, os);
|
||
|
}
|
||
|
|
||
|
// Overloads for ::std::u8string
|
||
|
#ifdef __cpp_lib_char8_t
|
||
|
GTEST_API_ void PrintU8StringTo(const ::std::u8string& s, ::std::ostream* os);
|
||
|
inline void PrintTo(const ::std::u8string& s, ::std::ostream* os) {
|
||
|
PrintU8StringTo(s, os);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Overloads for ::std::u16string
|
||
|
GTEST_API_ void PrintU16StringTo(const ::std::u16string& s, ::std::ostream* os);
|
||
|
inline void PrintTo(const ::std::u16string& s, ::std::ostream* os) {
|
||
|
PrintU16StringTo(s, os);
|
||
|
}
|
||
|
|
||
|
// Overloads for ::std::u32string
|
||
|
GTEST_API_ void PrintU32StringTo(const ::std::u32string& s, ::std::ostream* os);
|
||
|
inline void PrintTo(const ::std::u32string& s, ::std::ostream* os) {
|
||
|
PrintU32StringTo(s, os);
|
||
|
}
|
||
|
|
||
|
// Overloads for ::std::wstring.
|
||
|
#if GTEST_HAS_STD_WSTRING
|
||
|
GTEST_API_ void PrintWideStringTo(const ::std::wstring& s, ::std::ostream* os);
|
||
|
inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
|
||
|
PrintWideStringTo(s, os);
|
||
|
}
|
||
|
#endif // GTEST_HAS_STD_WSTRING
|
||
|
|
||
|
#if GTEST_INTERNAL_HAS_STRING_VIEW
|
||
|
// Overload for internal::StringView.
|
||
|
inline void PrintTo(internal::StringView sp, ::std::ostream* os) {
|
||
|
PrintTo(::std::string(sp), os);
|
||
|
}
|
||
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
|
||
|
|
||
|
inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)"; }
|
||
|
|
||
|
#if GTEST_HAS_RTTI
|
||
|
inline void PrintTo(const std::type_info& info, std::ostream* os) {
|
||
|
*os << internal::GetTypeName(info);
|
||
|
}
|
||
|
#endif // GTEST_HAS_RTTI
|
||
|
|
||
|
template <typename T>
|
||
|
void PrintTo(std::reference_wrapper<T> ref, ::std::ostream* os) {
|
||
|
UniversalPrinter<T&>::Print(ref.get(), os);
|
||
|
}
|
||
|
|
||
|
inline const void* VoidifyPointer(const void* p) { return p; }
|
||
|
inline const void* VoidifyPointer(volatile const void* p) {
|
||
|
return const_cast<const void*>(p);
|
||
|
}
|
||
|
|
||
|
template <typename T, typename Ptr>
|
||
|
void PrintSmartPointer(const Ptr& ptr, std::ostream* os, char) {
|
||
|
if (ptr == nullptr) {
|
||
|
*os << "(nullptr)";
|
||
|
} else {
|
||
|
// We can't print the value. Just print the pointer..
|
||
|
*os << "(" << (VoidifyPointer)(ptr.get()) << ")";
|
||
|
}
|
||
|
}
|
||
|
template <typename T, typename Ptr,
|
||
|
typename = typename std::enable_if<!std::is_void<T>::value &&
|
||
|
!std::is_array<T>::value>::type>
|
||
|
void PrintSmartPointer(const Ptr& ptr, std::ostream* os, int) {
|
||
|
if (ptr == nullptr) {
|
||
|
*os << "(nullptr)";
|
||
|
} else {
|
||
|
*os << "(ptr = " << (VoidifyPointer)(ptr.get()) << ", value = ";
|
||
|
UniversalPrinter<T>::Print(*ptr, os);
|
||
|
*os << ")";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T, typename D>
|
||
|
void PrintTo(const std::unique_ptr<T, D>& ptr, std::ostream* os) {
|
||
|
(PrintSmartPointer<T>)(ptr, os, 0);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void PrintTo(const std::shared_ptr<T>& ptr, std::ostream* os) {
|
||
|
(PrintSmartPointer<T>)(ptr, os, 0);
|
||
|
}
|
||
|
|
||
|
// Helper function for printing a tuple. T must be instantiated with
|
||
|
// a tuple type.
|
||
|
template <typename T>
|
||
|
void PrintTupleTo(const T&, std::integral_constant<size_t, 0>,
|
||
|
::std::ostream*) {}
|
||
|
|
||
|
template <typename T, size_t I>
|
||
|
void PrintTupleTo(const T& t, std::integral_constant<size_t, I>,
|
||
|
::std::ostream* os) {
|
||
|
PrintTupleTo(t, std::integral_constant<size_t, I - 1>(), os);
|
||
|
GTEST_INTENTIONAL_CONST_COND_PUSH_()
|
||
|
if (I > 1) {
|
||
|
GTEST_INTENTIONAL_CONST_COND_POP_()
|
||
|
*os << ", ";
|
||
|
}
|
||
|
UniversalPrinter<typename std::tuple_element<I - 1, T>::type>::Print(
|
||
|
std::get<I - 1>(t), os);
|
||
|
}
|
||
|
|
||
|
template <typename... Types>
|
||
|
void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) {
|
||
|
*os << "(";
|
||
|
PrintTupleTo(t, std::integral_constant<size_t, sizeof...(Types)>(), os);
|
||
|
*os << ")";
|
||
|
}
|
||
|
|
||
|
// Overload for std::pair.
|
||
|
template <typename T1, typename T2>
|
||
|
void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
|
||
|
*os << '(';
|
||
|
// We cannot use UniversalPrint(value.first, os) here, as T1 may be
|
||
|
// a reference type. The same for printing value.second.
|
||
|
UniversalPrinter<T1>::Print(value.first, os);
|
||
|
*os << ", ";
|
||
|
UniversalPrinter<T2>::Print(value.second, os);
|
||
|
*os << ')';
|
||
|
}
|
||
|
|
||
|
// Implements printing a non-reference type T by letting the compiler
|
||
|
// pick the right overload of PrintTo() for T.
|
||
|
template <typename T>
|
||
|
class UniversalPrinter {
|
||
|
public:
|
||
|
// MSVC warns about adding const to a function type, so we want to
|
||
|
// disable the warning.
|
||
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
|
||
|
|
||
|
// Note: we deliberately don't call this PrintTo(), as that name
|
||
|
// conflicts with ::testing::internal::PrintTo in the body of the
|
||
|
// function.
|
||
|
static void Print(const T& value, ::std::ostream* os) {
|
||
|
// By default, ::testing::internal::PrintTo() is used for printing
|
||
|
// the value.
|
||
|
//
|
||
|
// Thanks to Koenig look-up, if T is a class and has its own
|
||
|
// PrintTo() function defined in its namespace, that function will
|
||
|
// be visible here. Since it is more specific than the generic ones
|
||
|
// in ::testing::internal, it will be picked by the compiler in the
|
||
|
// following statement - exactly what we want.
|
||
|
PrintTo(value, os);
|
||
|
}
|
||
|
|
||
|
GTEST_DISABLE_MSC_WARNINGS_POP_()
|
||
|
};
|
||
|
|
||
|
// Remove any const-qualifiers before passing a type to UniversalPrinter.
|
||
|
template <typename T>
|
||
|
class UniversalPrinter<const T> : public UniversalPrinter<T> {};
|
||
|
|
||
|
#if GTEST_INTERNAL_HAS_ANY
|
||
|
|
||
|
// Printer for std::any / absl::any
|
||
|
|
||
|
template <>
|
||
|
class UniversalPrinter<Any> {
|
||
|
public:
|
||
|
static void Print(const Any& value, ::std::ostream* os) {
|
||
|
if (value.has_value()) {
|
||
|
*os << "value of type " << GetTypeName(value);
|
||
|
} else {
|
||
|
*os << "no value";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
static std::string GetTypeName(const Any& value) {
|
||
|
#if GTEST_HAS_RTTI
|
||
|
return internal::GetTypeName(value.type());
|
||
|
#else
|
||
|
static_cast<void>(value); // possibly unused
|
||
|
return "<unknown_type>";
|
||
|
#endif // GTEST_HAS_RTTI
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#endif // GTEST_INTERNAL_HAS_ANY
|
||
|
|
||
|
#if GTEST_INTERNAL_HAS_OPTIONAL
|
||
|
|
||
|
// Printer for std::optional / absl::optional
|
||
|
|
||
|
template <typename T>
|
||
|
class UniversalPrinter<Optional<T>> {
|
||
|
public:
|
||
|
static void Print(const Optional<T>& value, ::std::ostream* os) {
|
||
|
*os << '(';
|
||
|
if (!value) {
|
||
|
*os << "nullopt";
|
||
|
} else {
|
||
|
UniversalPrint(*value, os);
|
||
|
}
|
||
|
*os << ')';
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
class UniversalPrinter<decltype(Nullopt())> {
|
||
|
public:
|
||
|
static void Print(decltype(Nullopt()), ::std::ostream* os) {
|
||
|
*os << "(nullopt)";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#endif // GTEST_INTERNAL_HAS_OPTIONAL
|
||
|
|
||
|
#if GTEST_INTERNAL_HAS_VARIANT
|
||
|
|
||
|
// Printer for std::variant / absl::variant
|
||
|
|
||
|
template <typename... T>
|
||
|
class UniversalPrinter<Variant<T...>> {
|
||
|
public:
|
||
|
static void Print(const Variant<T...>& value, ::std::ostream* os) {
|
||
|
*os << '(';
|
||
|
#if GTEST_HAS_ABSL
|
||
|
absl::visit(Visitor{os, value.index()}, value);
|
||
|
#else
|
||
|
std::visit(Visitor{os, value.index()}, value);
|
||
|
#endif // GTEST_HAS_ABSL
|
||
|
*os << ')';
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
struct Visitor {
|
||
|
template <typename U>
|
||
|
void operator()(const U& u) const {
|
||
|
*os << "'" << GetTypeName<U>() << "(index = " << index
|
||
|
<< ")' with value ";
|
||
|
UniversalPrint(u, os);
|
||
|
}
|
||
|
::std::ostream* os;
|
||
|
std::size_t index;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
#endif // GTEST_INTERNAL_HAS_VARIANT
|
||
|
|
||
|
// UniversalPrintArray(begin, len, os) prints an array of 'len'
|
||
|
// elements, starting at address 'begin'.
|
||
|
template <typename T>
|
||
|
void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
|
||
|
if (len == 0) {
|
||
|
*os << "{}";
|
||
|
} else {
|
||
|
*os << "{ ";
|
||
|
const size_t kThreshold = 18;
|
||
|
const size_t kChunkSize = 8;
|
||
|
// If the array has more than kThreshold elements, we'll have to
|
||
|
// omit some details by printing only the first and the last
|
||
|
// kChunkSize elements.
|
||
|
if (len <= kThreshold) {
|
||
|
PrintRawArrayTo(begin, len, os);
|
||
|
} else {
|
||
|
PrintRawArrayTo(begin, kChunkSize, os);
|
||
|
*os << ", ..., ";
|
||
|
PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
|
||
|
}
|
||
|
*os << " }";
|
||
|
}
|
||
|
}
|
||
|
// This overload prints a (const) char array compactly.
|
||
|
GTEST_API_ void UniversalPrintArray(const char* begin, size_t len,
|
||
|
::std::ostream* os);
|
||
|
|
||
|
#ifdef __cpp_char8_t
|
||
|
// This overload prints a (const) char8_t array compactly.
|
||
|
GTEST_API_ void UniversalPrintArray(const char8_t* begin, size_t len,
|
||
|
::std::ostream* os);
|
||
|
#endif
|
||
|
|
||
|
// This overload prints a (const) char16_t array compactly.
|
||
|
GTEST_API_ void UniversalPrintArray(const char16_t* begin, size_t len,
|
||
|
::std::ostream* os);
|
||
|
|
||
|
// This overload prints a (const) char32_t array compactly.
|
||
|
GTEST_API_ void UniversalPrintArray(const char32_t* begin, size_t len,
|
||
|
::std::ostream* os);
|
||
|
|
||
|
// This overload prints a (const) wchar_t array compactly.
|
||
|
GTEST_API_ void UniversalPrintArray(const wchar_t* begin, size_t len,
|
||
|
::std::ostream* os);
|
||
|
|
||
|
// Implements printing an array type T[N].
|
||
|
template <typename T, size_t N>
|
||
|
class UniversalPrinter<T[N]> {
|
||
|
public:
|
||
|
// Prints the given array, omitting some elements when there are too
|
||
|
// many.
|
||
|
static void Print(const T (&a)[N], ::std::ostream* os) {
|
||
|
UniversalPrintArray(a, N, os);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Implements printing a reference type T&.
|
||
|
template <typename T>
|
||
|
class UniversalPrinter<T&> {
|
||
|
public:
|
||
|
// MSVC warns about adding const to a function type, so we want to
|
||
|
// disable the warning.
|
||
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
|
||
|
|
||
|
static void Print(const T& value, ::std::ostream* os) {
|
||
|
// Prints the address of the value. We use reinterpret_cast here
|
||
|
// as static_cast doesn't compile when T is a function type.
|
||
|
*os << "@" << reinterpret_cast<const void*>(&value) << " ";
|
||
|
|
||
|
// Then prints the value itself.
|
||
|
UniversalPrint(value, os);
|
||
|
}
|
||
|
|
||
|
GTEST_DISABLE_MSC_WARNINGS_POP_()
|
||
|
};
|
||
|
|
||
|
// Prints a value tersely: for a reference type, the referenced value
|
||
|
// (but not the address) is printed; for a (const) char pointer, the
|
||
|
// NUL-terminated string (but not the pointer) is printed.
|
||
|
|
||
|
template <typename T>
|
||
|
class UniversalTersePrinter {
|
||
|
public:
|
||
|
static void Print(const T& value, ::std::ostream* os) {
|
||
|
UniversalPrint(value, os);
|
||
|
}
|
||
|
};
|
||
|
template <typename T>
|
||
|
class UniversalTersePrinter<T&> {
|
||
|
public:
|
||
|
static void Print(const T& value, ::std::ostream* os) {
|
||
|
UniversalPrint(value, os);
|
||
|
}
|
||
|
};
|
||
|
template <typename T>
|
||
|
class UniversalTersePrinter<std::reference_wrapper<T>> {
|
||
|
public:
|
||
|
static void Print(std::reference_wrapper<T> value, ::std::ostream* os) {
|
||
|
UniversalTersePrinter<T>::Print(value.get(), os);
|
||
|
}
|
||
|
};
|
||
|
template <typename T, size_t N>
|
||
|
class UniversalTersePrinter<T[N]> {
|
||
|
public:
|
||
|
static void Print(const T (&value)[N], ::std::ostream* os) {
|
||
|
UniversalPrinter<T[N]>::Print(value, os);
|
||
|
}
|
||
|
};
|
||
|
template <>
|
||
|
class UniversalTersePrinter<const char*> {
|
||
|
public:
|
||
|
static void Print(const char* str, ::std::ostream* os) {
|
||
|
if (str == nullptr) {
|
||
|
*os << "NULL";
|
||
|
} else {
|
||
|
UniversalPrint(std::string(str), os);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
template <>
|
||
|
class UniversalTersePrinter<char*> : public UniversalTersePrinter<const char*> {
|
||
|
};
|
||
|
|
||
|
#ifdef __cpp_char8_t
|
||
|
template <>
|
||
|
class UniversalTersePrinter<const char8_t*> {
|
||
|
public:
|
||
|
static void Print(const char8_t* str, ::std::ostream* os) {
|
||
|
if (str == nullptr) {
|
||
|
*os << "NULL";
|
||
|
} else {
|
||
|
UniversalPrint(::std::u8string(str), os);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
template <>
|
||
|
class UniversalTersePrinter<char8_t*>
|
||
|
: public UniversalTersePrinter<const char8_t*> {};
|
||
|
#endif
|
||
|
|
||
|
template <>
|
||
|
class UniversalTersePrinter<const char16_t*> {
|
||
|
public:
|
||
|
static void Print(const char16_t* str, ::std::ostream* os) {
|
||
|
if (str == nullptr) {
|
||
|
*os << "NULL";
|
||
|
} else {
|
||
|
UniversalPrint(::std::u16string(str), os);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
template <>
|
||
|
class UniversalTersePrinter<char16_t*>
|
||
|
: public UniversalTersePrinter<const char16_t*> {};
|
||
|
|
||
|
template <>
|
||
|
class UniversalTersePrinter<const char32_t*> {
|
||
|
public:
|
||
|
static void Print(const char32_t* str, ::std::ostream* os) {
|
||
|
if (str == nullptr) {
|
||
|
*os << "NULL";
|
||
|
} else {
|
||
|
UniversalPrint(::std::u32string(str), os);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
template <>
|
||
|
class UniversalTersePrinter<char32_t*>
|
||
|
: public UniversalTersePrinter<const char32_t*> {};
|
||
|
|
||
|
#if GTEST_HAS_STD_WSTRING
|
||
|
template <>
|
||
|
class UniversalTersePrinter<const wchar_t*> {
|
||
|
public:
|
||
|
static void Print(const wchar_t* str, ::std::ostream* os) {
|
||
|
if (str == nullptr) {
|
||
|
*os << "NULL";
|
||
|
} else {
|
||
|
UniversalPrint(::std::wstring(str), os);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
#endif
|
||
|
|
||
|
template <>
|
||
|
class UniversalTersePrinter<wchar_t*> {
|
||
|
public:
|
||
|
static void Print(wchar_t* str, ::std::ostream* os) {
|
||
|
UniversalTersePrinter<const wchar_t*>::Print(str, os);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
void UniversalTersePrint(const T& value, ::std::ostream* os) {
|
||
|
UniversalTersePrinter<T>::Print(value, os);
|
||
|
}
|
||
|
|
||
|
// Prints a value using the type inferred by the compiler. The
|
||
|
// difference between this and UniversalTersePrint() is that for a
|
||
|
// (const) char pointer, this prints both the pointer and the
|
||
|
// NUL-terminated string.
|
||
|
template <typename T>
|
||
|
void UniversalPrint(const T& value, ::std::ostream* os) {
|
||
|
// A workarond for the bug in VC++ 7.1 that prevents us from instantiating
|
||
|
// UniversalPrinter with T directly.
|
||
|
typedef T T1;
|
||
|
UniversalPrinter<T1>::Print(value, os);
|
||
|
}
|
||
|
|
||
|
typedef ::std::vector<::std::string> Strings;
|
||
|
|
||
|
// Tersely prints the first N fields of a tuple to a string vector,
|
||
|
// one element for each field.
|
||
|
template <typename Tuple>
|
||
|
void TersePrintPrefixToStrings(const Tuple&, std::integral_constant<size_t, 0>,
|
||
|
Strings*) {}
|
||
|
template <typename Tuple, size_t I>
|
||
|
void TersePrintPrefixToStrings(const Tuple& t,
|
||
|
std::integral_constant<size_t, I>,
|
||
|
Strings* strings) {
|
||
|
TersePrintPrefixToStrings(t, std::integral_constant<size_t, I - 1>(),
|
||
|
strings);
|
||
|
::std::stringstream ss;
|
||
|
UniversalTersePrint(std::get<I - 1>(t), &ss);
|
||
|
strings->push_back(ss.str());
|
||
|
}
|
||
|
|
||
|
// Prints the fields of a tuple tersely to a string vector, one
|
||
|
// element for each field. See the comment before
|
||
|
// UniversalTersePrint() for how we define "tersely".
|
||
|
template <typename Tuple>
|
||
|
Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
|
||
|
Strings result;
|
||
|
TersePrintPrefixToStrings(
|
||
|
value, std::integral_constant<size_t, std::tuple_size<Tuple>::value>(),
|
||
|
&result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
|
||
|
template <typename T>
|
||
|
::std::string PrintToString(const T& value) {
|
||
|
::std::stringstream ss;
|
||
|
internal::UniversalTersePrinter<T>::Print(value, &ss);
|
||
|
return ss.str();
|
||
|
}
|
||
|
|
||
|
} // namespace testing
|
||
|
|
||
|
// Include any custom printer added by the local installation.
|
||
|
// We must include this header at the end to make sure it can use the
|
||
|
// declarations from this file.
|
||
|
#include "gtest/internal/custom/gtest-printers.h"
|
||
|
|
||
|
#endif // GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
|