osb/source/test/gtest/gtest-printers.h

1132 lines
39 KiB
C
Raw Normal View History

2023-07-14 11:45:11 +00:00
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Test - The Google C++ Testing and Mocking Framework
//
// This file implements a universal value printer that can print a
// value of any type T:
//
// void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
//
// A user can teach this function how to print a class type T by
// defining either operator<<() or PrintTo() in the namespace that
// defines T. More specifically, the FIRST defined function in the
// following list will be used (assuming T is defined in namespace
// foo):
//
// 1. foo::PrintTo(const T&, ostream*)
// 2. operator<<(ostream&, const T&) defined in either foo or the
// global namespace.
//
// However if T is an STL-style container then it is printed element-wise
// unless foo::PrintTo(const T&, ostream*) is defined. Note that
// operator<<() is ignored for container types.
//
// If none of the above is defined, it will print the debug string of
// the value if it is a protocol buffer, or print the raw bytes in the
// value otherwise.
//
// To aid debugging: when T is a reference type, the address of the
// value is also printed; when T is a (const) char pointer, both the
// pointer value and the NUL-terminated string it points to are
// printed.
//
// We also provide some convenient wrappers:
//
// // Prints a value to a string. For a (const or not) char
// // pointer, the NUL-terminated string (but not the pointer) is
// // printed.
// std::string ::testing::PrintToString(const T& value);
//
// // Prints a value tersely: for a reference type, the referenced
// // value (but not the address) is printed; for a (const or not) char
// // pointer, the NUL-terminated string (but not the pointer) is
// // printed.
// void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
//
// // Prints value using the type inferred by the compiler. The difference
// // from UniversalTersePrint() is that this function prints both the
// // pointer and the NUL-terminated string for a (const or not) char pointer.
// void ::testing::internal::UniversalPrint(const T& value, ostream*);
//
// // Prints the fields of a tuple tersely to a string vector, one
// // element for each field. Tuple support must be enabled in
// // gtest-port.h.
// std::vector<string> UniversalTersePrintTupleFieldsToStrings(
// const Tuple& value);
//
// Known limitation:
//
// The print primitives print the elements of an STL-style container
// using the compiler-inferred type of *iter where iter is a
// const_iterator of the container. When const_iterator is an input
// iterator but not a forward iterator, this inferred type may not
// match value_type, and the print output may be incorrect. In
// practice, this is rarely a problem as for most containers
// const_iterator is a forward iterator. We'll fix this if there's an
// actual need for it. Note that this fix cannot rely on value_type
// being defined as many user-defined container types don't have
// value_type.
// IWYU pragma: private, include "gtest/gtest.h"
// IWYU pragma: friend gtest/.*
// IWYU pragma: friend gmock/.*
#ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
#define GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
#include <functional>
#include <memory>
#include <ostream> // NOLINT
#include <sstream>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <utility>
#include <vector>
#include "gtest/internal/gtest-internal.h"
#include "gtest/internal/gtest-port.h"
namespace testing {
// Definitions in the internal* namespaces are subject to change without notice.
// DO NOT USE THEM IN USER CODE!
namespace internal {
template <typename T>
void UniversalPrint(const T& value, ::std::ostream* os);
// Used to print an STL-style container when the user doesn't define
// a PrintTo() for it.
struct ContainerPrinter {
template <typename T,
typename = typename std::enable_if<
(sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) &&
!IsRecursiveContainer<T>::value>::type>
static void PrintValue(const T& container, std::ostream* os) {
const size_t kMaxCount = 32; // The maximum number of elements to print.
*os << '{';
size_t count = 0;
for (auto&& elem : container) {
if (count > 0) {
*os << ',';
if (count == kMaxCount) { // Enough has been printed.
*os << " ...";
break;
}
}
*os << ' ';
// We cannot call PrintTo(elem, os) here as PrintTo() doesn't
// handle `elem` being a native array.
internal::UniversalPrint(elem, os);
++count;
}
if (count > 0) {
*os << ' ';
}
*os << '}';
}
};
// Used to print a pointer that is neither a char pointer nor a member
// pointer, when the user doesn't define PrintTo() for it. (A member
// variable pointer or member function pointer doesn't really point to
// a location in the address space. Their representation is
// implementation-defined. Therefore they will be printed as raw
// bytes.)
struct FunctionPointerPrinter {
template <typename T, typename = typename std::enable_if<
std::is_function<T>::value>::type>
static void PrintValue(T* p, ::std::ostream* os) {
if (p == nullptr) {
*os << "NULL";
} else {
// T is a function type, so '*os << p' doesn't do what we want
// (it just prints p as bool). We want to print p as a const
// void*.
*os << reinterpret_cast<const void*>(p);
}
}
};
struct PointerPrinter {
template <typename T>
static void PrintValue(T* p, ::std::ostream* os) {
if (p == nullptr) {
*os << "NULL";
} else {
// T is not a function type. We just call << to print p,
// relying on ADL to pick up user-defined << for their pointer
// types, if any.
*os << p;
}
}
};
namespace internal_stream_operator_without_lexical_name_lookup {
// The presence of an operator<< here will terminate lexical scope lookup
// straight away (even though it cannot be a match because of its argument
// types). Thus, the two operator<< calls in StreamPrinter will find only ADL
// candidates.
struct LookupBlocker {};
void operator<<(LookupBlocker, LookupBlocker);
struct StreamPrinter {
template <typename T,
// Don't accept member pointers here. We'd print them via implicit
// conversion to bool, which isn't useful.
typename = typename std::enable_if<
!std::is_member_pointer<T>::value>::type,
// Only accept types for which we can find a streaming operator via
// ADL (possibly involving implicit conversions).
typename = decltype(std::declval<std::ostream&>()
<< std::declval<const T&>())>
static void PrintValue(const T& value, ::std::ostream* os) {
// Call streaming operator found by ADL, possibly with implicit conversions
// of the arguments.
*os << value;
}
};
} // namespace internal_stream_operator_without_lexical_name_lookup
struct ProtobufPrinter {
// We print a protobuf using its ShortDebugString() when the string
// doesn't exceed this many characters; otherwise we print it using
// DebugString() for better readability.
static const size_t kProtobufOneLinerMaxLength = 50;
template <typename T,
typename = typename std::enable_if<
internal::HasDebugStringAndShortDebugString<T>::value>::type>
static void PrintValue(const T& value, ::std::ostream* os) {
std::string pretty_str = value.ShortDebugString();
if (pretty_str.length() > kProtobufOneLinerMaxLength) {
pretty_str = "\n" + value.DebugString();
}
*os << ("<" + pretty_str + ">");
}
};
struct ConvertibleToIntegerPrinter {
// Since T has no << operator or PrintTo() but can be implicitly
// converted to BiggestInt, we print it as a BiggestInt.
//
// Most likely T is an enum type (either named or unnamed), in which
// case printing it as an integer is the desired behavior. In case
// T is not an enum, printing it as an integer is the best we can do
// given that it has no user-defined printer.
static void PrintValue(internal::BiggestInt value, ::std::ostream* os) {
*os << value;
}
};
struct ConvertibleToStringViewPrinter {
#if GTEST_INTERNAL_HAS_STRING_VIEW
static void PrintValue(internal::StringView value, ::std::ostream* os) {
internal::UniversalPrint(value, os);
}
#endif
};
// Prints the given number of bytes in the given object to the given
// ostream.
GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
size_t count, ::std::ostream* os);
struct RawBytesPrinter {
// SFINAE on `sizeof` to make sure we have a complete type.
template <typename T, size_t = sizeof(T)>
static void PrintValue(const T& value, ::std::ostream* os) {
PrintBytesInObjectTo(
static_cast<const unsigned char*>(
// Load bearing cast to void* to support iOS
reinterpret_cast<const void*>(std::addressof(value))),
sizeof(value), os);
}
};
struct FallbackPrinter {
template <typename T>
static void PrintValue(const T&, ::std::ostream* os) {
*os << "(incomplete type)";
}
};
// Try every printer in order and return the first one that works.
template <typename T, typename E, typename Printer, typename... Printers>
struct FindFirstPrinter : FindFirstPrinter<T, E, Printers...> {};
template <typename T, typename Printer, typename... Printers>
struct FindFirstPrinter<
T, decltype(Printer::PrintValue(std::declval<const T&>(), nullptr)),
Printer, Printers...> {
using type = Printer;
};
// Select the best printer in the following order:
// - Print containers (they have begin/end/etc).
// - Print function pointers.
// - Print object pointers.
// - Use the stream operator, if available.
// - Print protocol buffers.
// - Print types convertible to BiggestInt.
// - Print types convertible to StringView, if available.
// - Fallback to printing the raw bytes of the object.
template <typename T>
void PrintWithFallback(const T& value, ::std::ostream* os) {
using Printer = typename FindFirstPrinter<
T, void, ContainerPrinter, FunctionPointerPrinter, PointerPrinter,
internal_stream_operator_without_lexical_name_lookup::StreamPrinter,
ProtobufPrinter, ConvertibleToIntegerPrinter,
ConvertibleToStringViewPrinter, RawBytesPrinter, FallbackPrinter>::type;
Printer::PrintValue(value, os);
}
// FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a
// value of type ToPrint that is an operand of a comparison assertion
// (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in
// the comparison, and is used to help determine the best way to
// format the value. In particular, when the value is a C string
// (char pointer) and the other operand is an STL string object, we
// want to format the C string as a string, since we know it is
// compared by value with the string object. If the value is a char
// pointer but the other operand is not an STL string object, we don't
// know whether the pointer is supposed to point to a NUL-terminated
// string, and thus want to print it as a pointer to be safe.
//
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
// The default case.
template <typename ToPrint, typename OtherOperand>
class FormatForComparison {
public:
static ::std::string Format(const ToPrint& value) {
return ::testing::PrintToString(value);
}
};
// Array.
template <typename ToPrint, size_t N, typename OtherOperand>
class FormatForComparison<ToPrint[N], OtherOperand> {
public:
static ::std::string Format(const ToPrint* value) {
return FormatForComparison<const ToPrint*, OtherOperand>::Format(value);
}
};
// By default, print C string as pointers to be safe, as we don't know
// whether they actually point to a NUL-terminated string.
#define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \
template <typename OtherOperand> \
class FormatForComparison<CharType*, OtherOperand> { \
public: \
static ::std::string Format(CharType* value) { \
return ::testing::PrintToString(static_cast<const void*>(value)); \
} \
}
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char);
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char);
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t);
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t);
#ifdef __cpp_lib_char8_t
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char8_t);
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char8_t);
#endif
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char16_t);
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char16_t);
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char32_t);
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char32_t);
#undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
// If a C string is compared with an STL string object, we know it's meant
// to point to a NUL-terminated string, and thus can print it as a string.
#define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \
template <> \
class FormatForComparison<CharType*, OtherStringType> { \
public: \
static ::std::string Format(CharType* value) { \
return ::testing::PrintToString(value); \
} \
}
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string);
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string);
#ifdef __cpp_lib_char8_t
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char8_t, ::std::u8string);
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char8_t, ::std::u8string);
#endif
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char16_t, ::std::u16string);
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char16_t, ::std::u16string);
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char32_t, ::std::u32string);
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char32_t, ::std::u32string);
#if GTEST_HAS_STD_WSTRING
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring);
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring);
#endif
#undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
// Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
// operand to be used in a failure message. The type (but not value)
// of the other operand may affect the format. This allows us to
// print a char* as a raw pointer when it is compared against another
// char* or void*, and print it as a C string when it is compared
// against an std::string object, for example.
//
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
template <typename T1, typename T2>
std::string FormatForComparisonFailureMessage(const T1& value,
const T2& /* other_operand */) {
return FormatForComparison<T1, T2>::Format(value);
}
// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
// value to the given ostream. The caller must ensure that
// 'ostream_ptr' is not NULL, or the behavior is undefined.
//
// We define UniversalPrinter as a class template (as opposed to a
// function template), as we need to partially specialize it for
// reference types, which cannot be done with function templates.
template <typename T>
class UniversalPrinter;
// Prints the given value using the << operator if it has one;
// otherwise prints the bytes in it. This is what
// UniversalPrinter<T>::Print() does when PrintTo() is not specialized
// or overloaded for type T.
//
// A user can override this behavior for a class type Foo by defining
// an overload of PrintTo() in the namespace where Foo is defined. We
// give the user this option as sometimes defining a << operator for
// Foo is not desirable (e.g. the coding style may prevent doing it,
// or there is already a << operator but it doesn't do what the user
// wants).
template <typename T>
void PrintTo(const T& value, ::std::ostream* os) {
internal::PrintWithFallback(value, os);
}
// The following list of PrintTo() overloads tells
// UniversalPrinter<T>::Print() how to print standard types (built-in
// types, strings, plain arrays, and pointers).
// Overloads for various char types.
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
inline void PrintTo(char c, ::std::ostream* os) {
// When printing a plain char, we always treat it as unsigned. This
// way, the output won't be affected by whether the compiler thinks
// char is signed or not.
PrintTo(static_cast<unsigned char>(c), os);
}
// Overloads for other simple built-in types.
inline void PrintTo(bool x, ::std::ostream* os) {
*os << (x ? "true" : "false");
}
// Overload for wchar_t type.
// Prints a wchar_t as a symbol if it is printable or as its internal
// code otherwise and also as its decimal code (except for L'\0').
// The L'\0' char is printed as "L'\\0'". The decimal code is printed
// as signed integer when wchar_t is implemented by the compiler
// as a signed type and is printed as an unsigned integer when wchar_t
// is implemented as an unsigned type.
GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
GTEST_API_ void PrintTo(char32_t c, ::std::ostream* os);
inline void PrintTo(char16_t c, ::std::ostream* os) {
PrintTo(ImplicitCast_<char32_t>(c), os);
}
#ifdef __cpp_char8_t
inline void PrintTo(char8_t c, ::std::ostream* os) {
PrintTo(ImplicitCast_<char32_t>(c), os);
}
#endif
// gcc/clang __{u,}int128_t
#if defined(__SIZEOF_INT128__)
GTEST_API_ void PrintTo(__uint128_t v, ::std::ostream* os);
GTEST_API_ void PrintTo(__int128_t v, ::std::ostream* os);
#endif // __SIZEOF_INT128__
// The default resolution used to print floating-point values uses only
// 6 digits, which can be confusing if a test compares two values whose
// difference lies in the 7th digit. So we'd like to print out numbers
// in full precision.
// However if the value is something simple like 1.1, full will print a
// long string like 1.100000001 due to floating-point numbers not using
// a base of 10. This routiune returns an appropriate resolution for a
// given floating-point number, that is, 6 if it will be accurate, or a
// max_digits10 value (full precision) if it won't, for values between
// 0.0001 and one million.
// It does this by computing what those digits would be (by multiplying
// by an appropriate power of 10), then dividing by that power again to
// see if gets the original value back.
// A similar algorithm applies for values larger than one million; note
// that for those values, we must divide to get a six-digit number, and
// then multiply to possibly get the original value again.
template <typename FloatType>
int AppropriateResolution(FloatType val) {
int full = std::numeric_limits<FloatType>::max_digits10;
if (val < 0) val = -val;
if (val < 1000000) {
FloatType mulfor6 = 1e10;
if (val >= 100000.0) { // 100,000 to 999,999
mulfor6 = 1.0;
} else if (val >= 10000.0) {
mulfor6 = 1e1;
} else if (val >= 1000.0) {
mulfor6 = 1e2;
} else if (val >= 100.0) {
mulfor6 = 1e3;
} else if (val >= 10.0) {
mulfor6 = 1e4;
} else if (val >= 1.0) {
mulfor6 = 1e5;
} else if (val >= 0.1) {
mulfor6 = 1e6;
} else if (val >= 0.01) {
mulfor6 = 1e7;
} else if (val >= 0.001) {
mulfor6 = 1e8;
} else if (val >= 0.0001) {
mulfor6 = 1e9;
}
if (static_cast<int32_t>(val * mulfor6 + 0.5) / mulfor6 == val) return 6;
} else if (val < 1e10) {
FloatType divfor6 = 1.0;
if (val >= 1e9) { // 1,000,000,000 to 9,999,999,999
divfor6 = 10000;
} else if (val >= 1e8) { // 100,000,000 to 999,999,999
divfor6 = 1000;
} else if (val >= 1e7) { // 10,000,000 to 99,999,999
divfor6 = 100;
} else if (val >= 1e6) { // 1,000,000 to 9,999,999
divfor6 = 10;
}
if (static_cast<int32_t>(val / divfor6 + 0.5) * divfor6 == val) return 6;
}
return full;
}
inline void PrintTo(float f, ::std::ostream* os) {
auto old_precision = os->precision();
os->precision(AppropriateResolution(f));
*os << f;
os->precision(old_precision);
}
inline void PrintTo(double d, ::std::ostream* os) {
auto old_precision = os->precision();
os->precision(AppropriateResolution(d));
*os << d;
os->precision(old_precision);
}
// Overloads for C strings.
GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
inline void PrintTo(char* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const char*>(s), os);
}
// signed/unsigned char is often used for representing binary data, so
// we print pointers to it as void* to be safe.
inline void PrintTo(const signed char* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const void*>(s), os);
}
inline void PrintTo(signed char* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const void*>(s), os);
}
inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const void*>(s), os);
}
inline void PrintTo(unsigned char* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const void*>(s), os);
}
#ifdef __cpp_char8_t
// Overloads for u8 strings.
GTEST_API_ void PrintTo(const char8_t* s, ::std::ostream* os);
inline void PrintTo(char8_t* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const char8_t*>(s), os);
}
#endif
// Overloads for u16 strings.
GTEST_API_ void PrintTo(const char16_t* s, ::std::ostream* os);
inline void PrintTo(char16_t* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const char16_t*>(s), os);
}
// Overloads for u32 strings.
GTEST_API_ void PrintTo(const char32_t* s, ::std::ostream* os);
inline void PrintTo(char32_t* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const char32_t*>(s), os);
}
// MSVC can be configured to define wchar_t as a typedef of unsigned
// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
// type. When wchar_t is a typedef, defining an overload for const
// wchar_t* would cause unsigned short* be printed as a wide string,
// possibly causing invalid memory accesses.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
// Overloads for wide C strings
GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
inline void PrintTo(wchar_t* s, ::std::ostream* os) {
PrintTo(ImplicitCast_<const wchar_t*>(s), os);
}
#endif
// Overload for C arrays. Multi-dimensional arrays are printed
// properly.
// Prints the given number of elements in an array, without printing
// the curly braces.
template <typename T>
void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
UniversalPrint(a[0], os);
for (size_t i = 1; i != count; i++) {
*os << ", ";
UniversalPrint(a[i], os);
}
}
// Overloads for ::std::string.
GTEST_API_ void PrintStringTo(const ::std::string& s, ::std::ostream* os);
inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
PrintStringTo(s, os);
}
// Overloads for ::std::u8string
#ifdef __cpp_lib_char8_t
GTEST_API_ void PrintU8StringTo(const ::std::u8string& s, ::std::ostream* os);
inline void PrintTo(const ::std::u8string& s, ::std::ostream* os) {
PrintU8StringTo(s, os);
}
#endif
// Overloads for ::std::u16string
GTEST_API_ void PrintU16StringTo(const ::std::u16string& s, ::std::ostream* os);
inline void PrintTo(const ::std::u16string& s, ::std::ostream* os) {
PrintU16StringTo(s, os);
}
// Overloads for ::std::u32string
GTEST_API_ void PrintU32StringTo(const ::std::u32string& s, ::std::ostream* os);
inline void PrintTo(const ::std::u32string& s, ::std::ostream* os) {
PrintU32StringTo(s, os);
}
// Overloads for ::std::wstring.
#if GTEST_HAS_STD_WSTRING
GTEST_API_ void PrintWideStringTo(const ::std::wstring& s, ::std::ostream* os);
inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
PrintWideStringTo(s, os);
}
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_INTERNAL_HAS_STRING_VIEW
// Overload for internal::StringView.
inline void PrintTo(internal::StringView sp, ::std::ostream* os) {
PrintTo(::std::string(sp), os);
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)"; }
#if GTEST_HAS_RTTI
inline void PrintTo(const std::type_info& info, std::ostream* os) {
*os << internal::GetTypeName(info);
}
#endif // GTEST_HAS_RTTI
template <typename T>
void PrintTo(std::reference_wrapper<T> ref, ::std::ostream* os) {
UniversalPrinter<T&>::Print(ref.get(), os);
}
inline const void* VoidifyPointer(const void* p) { return p; }
inline const void* VoidifyPointer(volatile const void* p) {
return const_cast<const void*>(p);
}
template <typename T, typename Ptr>
void PrintSmartPointer(const Ptr& ptr, std::ostream* os, char) {
if (ptr == nullptr) {
*os << "(nullptr)";
} else {
// We can't print the value. Just print the pointer..
*os << "(" << (VoidifyPointer)(ptr.get()) << ")";
}
}
template <typename T, typename Ptr,
typename = typename std::enable_if<!std::is_void<T>::value &&
!std::is_array<T>::value>::type>
void PrintSmartPointer(const Ptr& ptr, std::ostream* os, int) {
if (ptr == nullptr) {
*os << "(nullptr)";
} else {
*os << "(ptr = " << (VoidifyPointer)(ptr.get()) << ", value = ";
UniversalPrinter<T>::Print(*ptr, os);
*os << ")";
}
}
template <typename T, typename D>
void PrintTo(const std::unique_ptr<T, D>& ptr, std::ostream* os) {
(PrintSmartPointer<T>)(ptr, os, 0);
}
template <typename T>
void PrintTo(const std::shared_ptr<T>& ptr, std::ostream* os) {
(PrintSmartPointer<T>)(ptr, os, 0);
}
// Helper function for printing a tuple. T must be instantiated with
// a tuple type.
template <typename T>
void PrintTupleTo(const T&, std::integral_constant<size_t, 0>,
::std::ostream*) {}
template <typename T, size_t I>
void PrintTupleTo(const T& t, std::integral_constant<size_t, I>,
::std::ostream* os) {
PrintTupleTo(t, std::integral_constant<size_t, I - 1>(), os);
GTEST_INTENTIONAL_CONST_COND_PUSH_()
if (I > 1) {
GTEST_INTENTIONAL_CONST_COND_POP_()
*os << ", ";
}
UniversalPrinter<typename std::tuple_element<I - 1, T>::type>::Print(
std::get<I - 1>(t), os);
}
template <typename... Types>
void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) {
*os << "(";
PrintTupleTo(t, std::integral_constant<size_t, sizeof...(Types)>(), os);
*os << ")";
}
// Overload for std::pair.
template <typename T1, typename T2>
void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
*os << '(';
// We cannot use UniversalPrint(value.first, os) here, as T1 may be
// a reference type. The same for printing value.second.
UniversalPrinter<T1>::Print(value.first, os);
*os << ", ";
UniversalPrinter<T2>::Print(value.second, os);
*os << ')';
}
// Implements printing a non-reference type T by letting the compiler
// pick the right overload of PrintTo() for T.
template <typename T>
class UniversalPrinter {
public:
// MSVC warns about adding const to a function type, so we want to
// disable the warning.
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
// Note: we deliberately don't call this PrintTo(), as that name
// conflicts with ::testing::internal::PrintTo in the body of the
// function.
static void Print(const T& value, ::std::ostream* os) {
// By default, ::testing::internal::PrintTo() is used for printing
// the value.
//
// Thanks to Koenig look-up, if T is a class and has its own
// PrintTo() function defined in its namespace, that function will
// be visible here. Since it is more specific than the generic ones
// in ::testing::internal, it will be picked by the compiler in the
// following statement - exactly what we want.
PrintTo(value, os);
}
GTEST_DISABLE_MSC_WARNINGS_POP_()
};
// Remove any const-qualifiers before passing a type to UniversalPrinter.
template <typename T>
class UniversalPrinter<const T> : public UniversalPrinter<T> {};
#if GTEST_INTERNAL_HAS_ANY
// Printer for std::any / absl::any
template <>
class UniversalPrinter<Any> {
public:
static void Print(const Any& value, ::std::ostream* os) {
if (value.has_value()) {
*os << "value of type " << GetTypeName(value);
} else {
*os << "no value";
}
}
private:
static std::string GetTypeName(const Any& value) {
#if GTEST_HAS_RTTI
return internal::GetTypeName(value.type());
#else
static_cast<void>(value); // possibly unused
return "<unknown_type>";
#endif // GTEST_HAS_RTTI
}
};
#endif // GTEST_INTERNAL_HAS_ANY
#if GTEST_INTERNAL_HAS_OPTIONAL
// Printer for std::optional / absl::optional
template <typename T>
class UniversalPrinter<Optional<T>> {
public:
static void Print(const Optional<T>& value, ::std::ostream* os) {
*os << '(';
if (!value) {
*os << "nullopt";
} else {
UniversalPrint(*value, os);
}
*os << ')';
}
};
template <>
class UniversalPrinter<decltype(Nullopt())> {
public:
static void Print(decltype(Nullopt()), ::std::ostream* os) {
*os << "(nullopt)";
}
};
#endif // GTEST_INTERNAL_HAS_OPTIONAL
#if GTEST_INTERNAL_HAS_VARIANT
// Printer for std::variant / absl::variant
template <typename... T>
class UniversalPrinter<Variant<T...>> {
public:
static void Print(const Variant<T...>& value, ::std::ostream* os) {
*os << '(';
#if GTEST_HAS_ABSL
absl::visit(Visitor{os, value.index()}, value);
#else
std::visit(Visitor{os, value.index()}, value);
#endif // GTEST_HAS_ABSL
*os << ')';
}
private:
struct Visitor {
template <typename U>
void operator()(const U& u) const {
*os << "'" << GetTypeName<U>() << "(index = " << index
<< ")' with value ";
UniversalPrint(u, os);
}
::std::ostream* os;
std::size_t index;
};
};
#endif // GTEST_INTERNAL_HAS_VARIANT
// UniversalPrintArray(begin, len, os) prints an array of 'len'
// elements, starting at address 'begin'.
template <typename T>
void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
if (len == 0) {
*os << "{}";
} else {
*os << "{ ";
const size_t kThreshold = 18;
const size_t kChunkSize = 8;
// If the array has more than kThreshold elements, we'll have to
// omit some details by printing only the first and the last
// kChunkSize elements.
if (len <= kThreshold) {
PrintRawArrayTo(begin, len, os);
} else {
PrintRawArrayTo(begin, kChunkSize, os);
*os << ", ..., ";
PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
}
*os << " }";
}
}
// This overload prints a (const) char array compactly.
GTEST_API_ void UniversalPrintArray(const char* begin, size_t len,
::std::ostream* os);
#ifdef __cpp_char8_t
// This overload prints a (const) char8_t array compactly.
GTEST_API_ void UniversalPrintArray(const char8_t* begin, size_t len,
::std::ostream* os);
#endif
// This overload prints a (const) char16_t array compactly.
GTEST_API_ void UniversalPrintArray(const char16_t* begin, size_t len,
::std::ostream* os);
// This overload prints a (const) char32_t array compactly.
GTEST_API_ void UniversalPrintArray(const char32_t* begin, size_t len,
::std::ostream* os);
// This overload prints a (const) wchar_t array compactly.
GTEST_API_ void UniversalPrintArray(const wchar_t* begin, size_t len,
::std::ostream* os);
// Implements printing an array type T[N].
template <typename T, size_t N>
class UniversalPrinter<T[N]> {
public:
// Prints the given array, omitting some elements when there are too
// many.
static void Print(const T (&a)[N], ::std::ostream* os) {
UniversalPrintArray(a, N, os);
}
};
// Implements printing a reference type T&.
template <typename T>
class UniversalPrinter<T&> {
public:
// MSVC warns about adding const to a function type, so we want to
// disable the warning.
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
static void Print(const T& value, ::std::ostream* os) {
// Prints the address of the value. We use reinterpret_cast here
// as static_cast doesn't compile when T is a function type.
*os << "@" << reinterpret_cast<const void*>(&value) << " ";
// Then prints the value itself.
UniversalPrint(value, os);
}
GTEST_DISABLE_MSC_WARNINGS_POP_()
};
// Prints a value tersely: for a reference type, the referenced value
// (but not the address) is printed; for a (const) char pointer, the
// NUL-terminated string (but not the pointer) is printed.
template <typename T>
class UniversalTersePrinter {
public:
static void Print(const T& value, ::std::ostream* os) {
UniversalPrint(value, os);
}
};
template <typename T>
class UniversalTersePrinter<T&> {
public:
static void Print(const T& value, ::std::ostream* os) {
UniversalPrint(value, os);
}
};
template <typename T>
class UniversalTersePrinter<std::reference_wrapper<T>> {
public:
static void Print(std::reference_wrapper<T> value, ::std::ostream* os) {
UniversalTersePrinter<T>::Print(value.get(), os);
}
};
template <typename T, size_t N>
class UniversalTersePrinter<T[N]> {
public:
static void Print(const T (&value)[N], ::std::ostream* os) {
UniversalPrinter<T[N]>::Print(value, os);
}
};
template <>
class UniversalTersePrinter<const char*> {
public:
static void Print(const char* str, ::std::ostream* os) {
if (str == nullptr) {
*os << "NULL";
} else {
UniversalPrint(std::string(str), os);
}
}
};
template <>
class UniversalTersePrinter<char*> : public UniversalTersePrinter<const char*> {
};
#ifdef __cpp_char8_t
template <>
class UniversalTersePrinter<const char8_t*> {
public:
static void Print(const char8_t* str, ::std::ostream* os) {
if (str == nullptr) {
*os << "NULL";
} else {
UniversalPrint(::std::u8string(str), os);
}
}
};
template <>
class UniversalTersePrinter<char8_t*>
: public UniversalTersePrinter<const char8_t*> {};
#endif
template <>
class UniversalTersePrinter<const char16_t*> {
public:
static void Print(const char16_t* str, ::std::ostream* os) {
if (str == nullptr) {
*os << "NULL";
} else {
UniversalPrint(::std::u16string(str), os);
}
}
};
template <>
class UniversalTersePrinter<char16_t*>
: public UniversalTersePrinter<const char16_t*> {};
template <>
class UniversalTersePrinter<const char32_t*> {
public:
static void Print(const char32_t* str, ::std::ostream* os) {
if (str == nullptr) {
*os << "NULL";
} else {
UniversalPrint(::std::u32string(str), os);
}
}
};
template <>
class UniversalTersePrinter<char32_t*>
: public UniversalTersePrinter<const char32_t*> {};
#if GTEST_HAS_STD_WSTRING
template <>
class UniversalTersePrinter<const wchar_t*> {
public:
static void Print(const wchar_t* str, ::std::ostream* os) {
if (str == nullptr) {
*os << "NULL";
} else {
UniversalPrint(::std::wstring(str), os);
}
}
};
#endif
template <>
class UniversalTersePrinter<wchar_t*> {
public:
static void Print(wchar_t* str, ::std::ostream* os) {
UniversalTersePrinter<const wchar_t*>::Print(str, os);
}
};
template <typename T>
void UniversalTersePrint(const T& value, ::std::ostream* os) {
UniversalTersePrinter<T>::Print(value, os);
}
// Prints a value using the type inferred by the compiler. The
// difference between this and UniversalTersePrint() is that for a
// (const) char pointer, this prints both the pointer and the
// NUL-terminated string.
template <typename T>
void UniversalPrint(const T& value, ::std::ostream* os) {
// A workarond for the bug in VC++ 7.1 that prevents us from instantiating
// UniversalPrinter with T directly.
typedef T T1;
UniversalPrinter<T1>::Print(value, os);
}
typedef ::std::vector<::std::string> Strings;
// Tersely prints the first N fields of a tuple to a string vector,
// one element for each field.
template <typename Tuple>
void TersePrintPrefixToStrings(const Tuple&, std::integral_constant<size_t, 0>,
Strings*) {}
template <typename Tuple, size_t I>
void TersePrintPrefixToStrings(const Tuple& t,
std::integral_constant<size_t, I>,
Strings* strings) {
TersePrintPrefixToStrings(t, std::integral_constant<size_t, I - 1>(),
strings);
::std::stringstream ss;
UniversalTersePrint(std::get<I - 1>(t), &ss);
strings->push_back(ss.str());
}
// Prints the fields of a tuple tersely to a string vector, one
// element for each field. See the comment before
// UniversalTersePrint() for how we define "tersely".
template <typename Tuple>
Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
Strings result;
TersePrintPrefixToStrings(
value, std::integral_constant<size_t, std::tuple_size<Tuple>::value>(),
&result);
return result;
}
} // namespace internal
template <typename T>
::std::string PrintToString(const T& value) {
::std::stringstream ss;
internal::UniversalTersePrinter<T>::Print(value, &ss);
return ss.str();
}
} // namespace testing
// Include any custom printer added by the local installation.
// We must include this header at the end to make sure it can use the
// declarations from this file.
#include "gtest/internal/custom/gtest-printers.h"
#endif // GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_