1572 lines
62 KiB
C
1572 lines
62 KiB
C
|
// Copyright 2005, Google Inc.
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following disclaimer
|
||
|
// in the documentation and/or other materials provided with the
|
||
|
// distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived from
|
||
|
// this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// The Google C++ Testing and Mocking Framework (Google Test)
|
||
|
//
|
||
|
// This header file declares functions and macros used internally by
|
||
|
// Google Test. They are subject to change without notice.
|
||
|
|
||
|
// IWYU pragma: private, include "gtest/gtest.h"
|
||
|
// IWYU pragma: friend gtest/.*
|
||
|
// IWYU pragma: friend gmock/.*
|
||
|
|
||
|
#ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
||
|
#define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
||
|
|
||
|
#include "gtest/internal/gtest-port.h"
|
||
|
|
||
|
#if GTEST_OS_LINUX
|
||
|
#include <stdlib.h>
|
||
|
#include <sys/types.h>
|
||
|
#include <sys/wait.h>
|
||
|
#include <unistd.h>
|
||
|
#endif // GTEST_OS_LINUX
|
||
|
|
||
|
#if GTEST_HAS_EXCEPTIONS
|
||
|
#include <stdexcept>
|
||
|
#endif
|
||
|
|
||
|
#include <ctype.h>
|
||
|
#include <float.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <cstdint>
|
||
|
#include <functional>
|
||
|
#include <iomanip>
|
||
|
#include <limits>
|
||
|
#include <map>
|
||
|
#include <set>
|
||
|
#include <string>
|
||
|
#include <type_traits>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "gtest/gtest-message.h"
|
||
|
#include "gtest/internal/gtest-filepath.h"
|
||
|
#include "gtest/internal/gtest-string.h"
|
||
|
#include "gtest/internal/gtest-type-util.h"
|
||
|
|
||
|
// Due to C++ preprocessor weirdness, we need double indirection to
|
||
|
// concatenate two tokens when one of them is __LINE__. Writing
|
||
|
//
|
||
|
// foo ## __LINE__
|
||
|
//
|
||
|
// will result in the token foo__LINE__, instead of foo followed by
|
||
|
// the current line number. For more details, see
|
||
|
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
|
||
|
#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
|
||
|
#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
|
||
|
|
||
|
// Stringifies its argument.
|
||
|
// Work around a bug in visual studio which doesn't accept code like this:
|
||
|
//
|
||
|
// #define GTEST_STRINGIFY_(name) #name
|
||
|
// #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
|
||
|
// MACRO(, x, y)
|
||
|
//
|
||
|
// Complaining about the argument to GTEST_STRINGIFY_ being empty.
|
||
|
// This is allowed by the spec.
|
||
|
#define GTEST_STRINGIFY_HELPER_(name, ...) #name
|
||
|
#define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
|
||
|
|
||
|
namespace proto2 {
|
||
|
class MessageLite;
|
||
|
}
|
||
|
|
||
|
namespace testing {
|
||
|
|
||
|
// Forward declarations.
|
||
|
|
||
|
class AssertionResult; // Result of an assertion.
|
||
|
class Message; // Represents a failure message.
|
||
|
class Test; // Represents a test.
|
||
|
class TestInfo; // Information about a test.
|
||
|
class TestPartResult; // Result of a test part.
|
||
|
class UnitTest; // A collection of test suites.
|
||
|
|
||
|
template <typename T>
|
||
|
::std::string PrintToString(const T& value);
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
struct TraceInfo; // Information about a trace point.
|
||
|
class TestInfoImpl; // Opaque implementation of TestInfo
|
||
|
class UnitTestImpl; // Opaque implementation of UnitTest
|
||
|
|
||
|
// The text used in failure messages to indicate the start of the
|
||
|
// stack trace.
|
||
|
GTEST_API_ extern const char kStackTraceMarker[];
|
||
|
|
||
|
// An IgnoredValue object can be implicitly constructed from ANY value.
|
||
|
class IgnoredValue {
|
||
|
struct Sink {};
|
||
|
|
||
|
public:
|
||
|
// This constructor template allows any value to be implicitly
|
||
|
// converted to IgnoredValue. The object has no data member and
|
||
|
// doesn't try to remember anything about the argument. We
|
||
|
// deliberately omit the 'explicit' keyword in order to allow the
|
||
|
// conversion to be implicit.
|
||
|
// Disable the conversion if T already has a magical conversion operator.
|
||
|
// Otherwise we get ambiguity.
|
||
|
template <typename T,
|
||
|
typename std::enable_if<!std::is_convertible<T, Sink>::value,
|
||
|
int>::type = 0>
|
||
|
IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
|
||
|
};
|
||
|
|
||
|
// Appends the user-supplied message to the Google-Test-generated message.
|
||
|
GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
|
||
|
const Message& user_msg);
|
||
|
|
||
|
#if GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(
|
||
|
4275 /* an exported class was derived from a class that was not exported */)
|
||
|
|
||
|
// This exception is thrown by (and only by) a failed Google Test
|
||
|
// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
|
||
|
// are enabled). We derive it from std::runtime_error, which is for
|
||
|
// errors presumably detectable only at run time. Since
|
||
|
// std::runtime_error inherits from std::exception, many testing
|
||
|
// frameworks know how to extract and print the message inside it.
|
||
|
class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
|
||
|
public:
|
||
|
explicit GoogleTestFailureException(const TestPartResult& failure);
|
||
|
};
|
||
|
|
||
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
|
||
|
|
||
|
#endif // GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
namespace edit_distance {
|
||
|
// Returns the optimal edits to go from 'left' to 'right'.
|
||
|
// All edits cost the same, with replace having lower priority than
|
||
|
// add/remove.
|
||
|
// Simple implementation of the Wagner-Fischer algorithm.
|
||
|
// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
|
||
|
enum EditType { kMatch, kAdd, kRemove, kReplace };
|
||
|
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
|
||
|
const std::vector<size_t>& left, const std::vector<size_t>& right);
|
||
|
|
||
|
// Same as above, but the input is represented as strings.
|
||
|
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
|
||
|
const std::vector<std::string>& left,
|
||
|
const std::vector<std::string>& right);
|
||
|
|
||
|
// Create a diff of the input strings in Unified diff format.
|
||
|
GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
|
||
|
const std::vector<std::string>& right,
|
||
|
size_t context = 2);
|
||
|
|
||
|
} // namespace edit_distance
|
||
|
|
||
|
// Constructs and returns the message for an equality assertion
|
||
|
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
|
||
|
//
|
||
|
// The first four parameters are the expressions used in the assertion
|
||
|
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
|
||
|
// where foo is 5 and bar is 6, we have:
|
||
|
//
|
||
|
// expected_expression: "foo"
|
||
|
// actual_expression: "bar"
|
||
|
// expected_value: "5"
|
||
|
// actual_value: "6"
|
||
|
//
|
||
|
// The ignoring_case parameter is true if and only if the assertion is a
|
||
|
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
|
||
|
// be inserted into the message.
|
||
|
GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
|
||
|
const char* actual_expression,
|
||
|
const std::string& expected_value,
|
||
|
const std::string& actual_value,
|
||
|
bool ignoring_case);
|
||
|
|
||
|
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
|
||
|
GTEST_API_ std::string GetBoolAssertionFailureMessage(
|
||
|
const AssertionResult& assertion_result, const char* expression_text,
|
||
|
const char* actual_predicate_value, const char* expected_predicate_value);
|
||
|
|
||
|
// This template class represents an IEEE floating-point number
|
||
|
// (either single-precision or double-precision, depending on the
|
||
|
// template parameters).
|
||
|
//
|
||
|
// The purpose of this class is to do more sophisticated number
|
||
|
// comparison. (Due to round-off error, etc, it's very unlikely that
|
||
|
// two floating-points will be equal exactly. Hence a naive
|
||
|
// comparison by the == operation often doesn't work.)
|
||
|
//
|
||
|
// Format of IEEE floating-point:
|
||
|
//
|
||
|
// The most-significant bit being the leftmost, an IEEE
|
||
|
// floating-point looks like
|
||
|
//
|
||
|
// sign_bit exponent_bits fraction_bits
|
||
|
//
|
||
|
// Here, sign_bit is a single bit that designates the sign of the
|
||
|
// number.
|
||
|
//
|
||
|
// For float, there are 8 exponent bits and 23 fraction bits.
|
||
|
//
|
||
|
// For double, there are 11 exponent bits and 52 fraction bits.
|
||
|
//
|
||
|
// More details can be found at
|
||
|
// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
|
||
|
//
|
||
|
// Template parameter:
|
||
|
//
|
||
|
// RawType: the raw floating-point type (either float or double)
|
||
|
template <typename RawType>
|
||
|
class FloatingPoint {
|
||
|
public:
|
||
|
// Defines the unsigned integer type that has the same size as the
|
||
|
// floating point number.
|
||
|
typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
|
||
|
|
||
|
// Constants.
|
||
|
|
||
|
// # of bits in a number.
|
||
|
static const size_t kBitCount = 8 * sizeof(RawType);
|
||
|
|
||
|
// # of fraction bits in a number.
|
||
|
static const size_t kFractionBitCount =
|
||
|
std::numeric_limits<RawType>::digits - 1;
|
||
|
|
||
|
// # of exponent bits in a number.
|
||
|
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
|
||
|
|
||
|
// The mask for the sign bit.
|
||
|
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
|
||
|
|
||
|
// The mask for the fraction bits.
|
||
|
static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
|
||
|
(kExponentBitCount + 1);
|
||
|
|
||
|
// The mask for the exponent bits.
|
||
|
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
|
||
|
|
||
|
// How many ULP's (Units in the Last Place) we want to tolerate when
|
||
|
// comparing two numbers. The larger the value, the more error we
|
||
|
// allow. A 0 value means that two numbers must be exactly the same
|
||
|
// to be considered equal.
|
||
|
//
|
||
|
// The maximum error of a single floating-point operation is 0.5
|
||
|
// units in the last place. On Intel CPU's, all floating-point
|
||
|
// calculations are done with 80-bit precision, while double has 64
|
||
|
// bits. Therefore, 4 should be enough for ordinary use.
|
||
|
//
|
||
|
// See the following article for more details on ULP:
|
||
|
// http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
|
||
|
static const uint32_t kMaxUlps = 4;
|
||
|
|
||
|
// Constructs a FloatingPoint from a raw floating-point number.
|
||
|
//
|
||
|
// On an Intel CPU, passing a non-normalized NAN (Not a Number)
|
||
|
// around may change its bits, although the new value is guaranteed
|
||
|
// to be also a NAN. Therefore, don't expect this constructor to
|
||
|
// preserve the bits in x when x is a NAN.
|
||
|
explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
|
||
|
|
||
|
// Static methods
|
||
|
|
||
|
// Reinterprets a bit pattern as a floating-point number.
|
||
|
//
|
||
|
// This function is needed to test the AlmostEquals() method.
|
||
|
static RawType ReinterpretBits(const Bits bits) {
|
||
|
FloatingPoint fp(0);
|
||
|
fp.u_.bits_ = bits;
|
||
|
return fp.u_.value_;
|
||
|
}
|
||
|
|
||
|
// Returns the floating-point number that represent positive infinity.
|
||
|
static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
|
||
|
|
||
|
// Returns the maximum representable finite floating-point number.
|
||
|
static RawType Max();
|
||
|
|
||
|
// Non-static methods
|
||
|
|
||
|
// Returns the bits that represents this number.
|
||
|
const Bits& bits() const { return u_.bits_; }
|
||
|
|
||
|
// Returns the exponent bits of this number.
|
||
|
Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
|
||
|
|
||
|
// Returns the fraction bits of this number.
|
||
|
Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
|
||
|
|
||
|
// Returns the sign bit of this number.
|
||
|
Bits sign_bit() const { return kSignBitMask & u_.bits_; }
|
||
|
|
||
|
// Returns true if and only if this is NAN (not a number).
|
||
|
bool is_nan() const {
|
||
|
// It's a NAN if the exponent bits are all ones and the fraction
|
||
|
// bits are not entirely zeros.
|
||
|
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
|
||
|
}
|
||
|
|
||
|
// Returns true if and only if this number is at most kMaxUlps ULP's away
|
||
|
// from rhs. In particular, this function:
|
||
|
//
|
||
|
// - returns false if either number is (or both are) NAN.
|
||
|
// - treats really large numbers as almost equal to infinity.
|
||
|
// - thinks +0.0 and -0.0 are 0 DLP's apart.
|
||
|
bool AlmostEquals(const FloatingPoint& rhs) const {
|
||
|
// The IEEE standard says that any comparison operation involving
|
||
|
// a NAN must return false.
|
||
|
if (is_nan() || rhs.is_nan()) return false;
|
||
|
|
||
|
return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
|
||
|
kMaxUlps;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
// The data type used to store the actual floating-point number.
|
||
|
union FloatingPointUnion {
|
||
|
RawType value_; // The raw floating-point number.
|
||
|
Bits bits_; // The bits that represent the number.
|
||
|
};
|
||
|
|
||
|
// Converts an integer from the sign-and-magnitude representation to
|
||
|
// the biased representation. More precisely, let N be 2 to the
|
||
|
// power of (kBitCount - 1), an integer x is represented by the
|
||
|
// unsigned number x + N.
|
||
|
//
|
||
|
// For instance,
|
||
|
//
|
||
|
// -N + 1 (the most negative number representable using
|
||
|
// sign-and-magnitude) is represented by 1;
|
||
|
// 0 is represented by N; and
|
||
|
// N - 1 (the biggest number representable using
|
||
|
// sign-and-magnitude) is represented by 2N - 1.
|
||
|
//
|
||
|
// Read http://en.wikipedia.org/wiki/Signed_number_representations
|
||
|
// for more details on signed number representations.
|
||
|
static Bits SignAndMagnitudeToBiased(const Bits& sam) {
|
||
|
if (kSignBitMask & sam) {
|
||
|
// sam represents a negative number.
|
||
|
return ~sam + 1;
|
||
|
} else {
|
||
|
// sam represents a positive number.
|
||
|
return kSignBitMask | sam;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Given two numbers in the sign-and-magnitude representation,
|
||
|
// returns the distance between them as an unsigned number.
|
||
|
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
|
||
|
const Bits& sam2) {
|
||
|
const Bits biased1 = SignAndMagnitudeToBiased(sam1);
|
||
|
const Bits biased2 = SignAndMagnitudeToBiased(sam2);
|
||
|
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
|
||
|
}
|
||
|
|
||
|
FloatingPointUnion u_;
|
||
|
};
|
||
|
|
||
|
// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
|
||
|
// macro defined by <windows.h>.
|
||
|
template <>
|
||
|
inline float FloatingPoint<float>::Max() {
|
||
|
return FLT_MAX;
|
||
|
}
|
||
|
template <>
|
||
|
inline double FloatingPoint<double>::Max() {
|
||
|
return DBL_MAX;
|
||
|
}
|
||
|
|
||
|
// Typedefs the instances of the FloatingPoint template class that we
|
||
|
// care to use.
|
||
|
typedef FloatingPoint<float> Float;
|
||
|
typedef FloatingPoint<double> Double;
|
||
|
|
||
|
// In order to catch the mistake of putting tests that use different
|
||
|
// test fixture classes in the same test suite, we need to assign
|
||
|
// unique IDs to fixture classes and compare them. The TypeId type is
|
||
|
// used to hold such IDs. The user should treat TypeId as an opaque
|
||
|
// type: the only operation allowed on TypeId values is to compare
|
||
|
// them for equality using the == operator.
|
||
|
typedef const void* TypeId;
|
||
|
|
||
|
template <typename T>
|
||
|
class TypeIdHelper {
|
||
|
public:
|
||
|
// dummy_ must not have a const type. Otherwise an overly eager
|
||
|
// compiler (e.g. MSVC 7.1 & 8.0) may try to merge
|
||
|
// TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
|
||
|
static bool dummy_;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
bool TypeIdHelper<T>::dummy_ = false;
|
||
|
|
||
|
// GetTypeId<T>() returns the ID of type T. Different values will be
|
||
|
// returned for different types. Calling the function twice with the
|
||
|
// same type argument is guaranteed to return the same ID.
|
||
|
template <typename T>
|
||
|
TypeId GetTypeId() {
|
||
|
// The compiler is required to allocate a different
|
||
|
// TypeIdHelper<T>::dummy_ variable for each T used to instantiate
|
||
|
// the template. Therefore, the address of dummy_ is guaranteed to
|
||
|
// be unique.
|
||
|
return &(TypeIdHelper<T>::dummy_);
|
||
|
}
|
||
|
|
||
|
// Returns the type ID of ::testing::Test. Always call this instead
|
||
|
// of GetTypeId< ::testing::Test>() to get the type ID of
|
||
|
// ::testing::Test, as the latter may give the wrong result due to a
|
||
|
// suspected linker bug when compiling Google Test as a Mac OS X
|
||
|
// framework.
|
||
|
GTEST_API_ TypeId GetTestTypeId();
|
||
|
|
||
|
// Defines the abstract factory interface that creates instances
|
||
|
// of a Test object.
|
||
|
class TestFactoryBase {
|
||
|
public:
|
||
|
virtual ~TestFactoryBase() {}
|
||
|
|
||
|
// Creates a test instance to run. The instance is both created and destroyed
|
||
|
// within TestInfoImpl::Run()
|
||
|
virtual Test* CreateTest() = 0;
|
||
|
|
||
|
protected:
|
||
|
TestFactoryBase() {}
|
||
|
|
||
|
private:
|
||
|
TestFactoryBase(const TestFactoryBase&) = delete;
|
||
|
TestFactoryBase& operator=(const TestFactoryBase&) = delete;
|
||
|
};
|
||
|
|
||
|
// This class provides implementation of TestFactoryBase interface.
|
||
|
// It is used in TEST and TEST_F macros.
|
||
|
template <class TestClass>
|
||
|
class TestFactoryImpl : public TestFactoryBase {
|
||
|
public:
|
||
|
Test* CreateTest() override { return new TestClass; }
|
||
|
};
|
||
|
|
||
|
#if GTEST_OS_WINDOWS
|
||
|
|
||
|
// Predicate-formatters for implementing the HRESULT checking macros
|
||
|
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
|
||
|
// We pass a long instead of HRESULT to avoid causing an
|
||
|
// include dependency for the HRESULT type.
|
||
|
GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
|
||
|
long hr); // NOLINT
|
||
|
GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
|
||
|
long hr); // NOLINT
|
||
|
|
||
|
#endif // GTEST_OS_WINDOWS
|
||
|
|
||
|
// Types of SetUpTestSuite() and TearDownTestSuite() functions.
|
||
|
using SetUpTestSuiteFunc = void (*)();
|
||
|
using TearDownTestSuiteFunc = void (*)();
|
||
|
|
||
|
struct CodeLocation {
|
||
|
CodeLocation(const std::string& a_file, int a_line)
|
||
|
: file(a_file), line(a_line) {}
|
||
|
|
||
|
std::string file;
|
||
|
int line;
|
||
|
};
|
||
|
|
||
|
// Helper to identify which setup function for TestCase / TestSuite to call.
|
||
|
// Only one function is allowed, either TestCase or TestSute but not both.
|
||
|
|
||
|
// Utility functions to help SuiteApiResolver
|
||
|
using SetUpTearDownSuiteFuncType = void (*)();
|
||
|
|
||
|
inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
|
||
|
SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
|
||
|
return a == def ? nullptr : a;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
// Note that SuiteApiResolver inherits from T because
|
||
|
// SetUpTestSuite()/TearDownTestSuite() could be protected. This way
|
||
|
// SuiteApiResolver can access them.
|
||
|
struct SuiteApiResolver : T {
|
||
|
// testing::Test is only forward declared at this point. So we make it a
|
||
|
// dependent class for the compiler to be OK with it.
|
||
|
using Test =
|
||
|
typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
|
||
|
|
||
|
static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
|
||
|
int line_num) {
|
||
|
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
|
||
|
SetUpTearDownSuiteFuncType test_case_fp =
|
||
|
GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
|
||
|
SetUpTearDownSuiteFuncType test_suite_fp =
|
||
|
GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
|
||
|
|
||
|
GTEST_CHECK_(!test_case_fp || !test_suite_fp)
|
||
|
<< "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
|
||
|
"make sure there is only one present at "
|
||
|
<< filename << ":" << line_num;
|
||
|
|
||
|
return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
|
||
|
#else
|
||
|
(void)(filename);
|
||
|
(void)(line_num);
|
||
|
return &T::SetUpTestSuite;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
|
||
|
int line_num) {
|
||
|
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
|
||
|
SetUpTearDownSuiteFuncType test_case_fp =
|
||
|
GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
|
||
|
SetUpTearDownSuiteFuncType test_suite_fp =
|
||
|
GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
|
||
|
|
||
|
GTEST_CHECK_(!test_case_fp || !test_suite_fp)
|
||
|
<< "Test can not provide both TearDownTestSuite and TearDownTestCase,"
|
||
|
" please make sure there is only one present at"
|
||
|
<< filename << ":" << line_num;
|
||
|
|
||
|
return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
|
||
|
#else
|
||
|
(void)(filename);
|
||
|
(void)(line_num);
|
||
|
return &T::TearDownTestSuite;
|
||
|
#endif
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Creates a new TestInfo object and registers it with Google Test;
|
||
|
// returns the created object.
|
||
|
//
|
||
|
// Arguments:
|
||
|
//
|
||
|
// test_suite_name: name of the test suite
|
||
|
// name: name of the test
|
||
|
// type_param: the name of the test's type parameter, or NULL if
|
||
|
// this is not a typed or a type-parameterized test.
|
||
|
// value_param: text representation of the test's value parameter,
|
||
|
// or NULL if this is not a type-parameterized test.
|
||
|
// code_location: code location where the test is defined
|
||
|
// fixture_class_id: ID of the test fixture class
|
||
|
// set_up_tc: pointer to the function that sets up the test suite
|
||
|
// tear_down_tc: pointer to the function that tears down the test suite
|
||
|
// factory: pointer to the factory that creates a test object.
|
||
|
// The newly created TestInfo instance will assume
|
||
|
// ownership of the factory object.
|
||
|
GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
|
||
|
const char* test_suite_name, const char* name, const char* type_param,
|
||
|
const char* value_param, CodeLocation code_location,
|
||
|
TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
|
||
|
TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
|
||
|
|
||
|
// If *pstr starts with the given prefix, modifies *pstr to be right
|
||
|
// past the prefix and returns true; otherwise leaves *pstr unchanged
|
||
|
// and returns false. None of pstr, *pstr, and prefix can be NULL.
|
||
|
GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
|
||
|
|
||
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
|
||
|
/* class A needs to have dll-interface to be used by clients of class B */)
|
||
|
|
||
|
// State of the definition of a type-parameterized test suite.
|
||
|
class GTEST_API_ TypedTestSuitePState {
|
||
|
public:
|
||
|
TypedTestSuitePState() : registered_(false) {}
|
||
|
|
||
|
// Adds the given test name to defined_test_names_ and return true
|
||
|
// if the test suite hasn't been registered; otherwise aborts the
|
||
|
// program.
|
||
|
bool AddTestName(const char* file, int line, const char* case_name,
|
||
|
const char* test_name) {
|
||
|
if (registered_) {
|
||
|
fprintf(stderr,
|
||
|
"%s Test %s must be defined before "
|
||
|
"REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
|
||
|
FormatFileLocation(file, line).c_str(), test_name, case_name);
|
||
|
fflush(stderr);
|
||
|
posix::Abort();
|
||
|
}
|
||
|
registered_tests_.insert(
|
||
|
::std::make_pair(test_name, CodeLocation(file, line)));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool TestExists(const std::string& test_name) const {
|
||
|
return registered_tests_.count(test_name) > 0;
|
||
|
}
|
||
|
|
||
|
const CodeLocation& GetCodeLocation(const std::string& test_name) const {
|
||
|
RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
|
||
|
GTEST_CHECK_(it != registered_tests_.end());
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// Verifies that registered_tests match the test names in
|
||
|
// defined_test_names_; returns registered_tests if successful, or
|
||
|
// aborts the program otherwise.
|
||
|
const char* VerifyRegisteredTestNames(const char* test_suite_name,
|
||
|
const char* file, int line,
|
||
|
const char* registered_tests);
|
||
|
|
||
|
private:
|
||
|
typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
|
||
|
|
||
|
bool registered_;
|
||
|
RegisteredTestsMap registered_tests_;
|
||
|
};
|
||
|
|
||
|
// Legacy API is deprecated but still available
|
||
|
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
|
||
|
using TypedTestCasePState = TypedTestSuitePState;
|
||
|
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
|
||
|
|
||
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
|
||
|
|
||
|
// Skips to the first non-space char after the first comma in 'str';
|
||
|
// returns NULL if no comma is found in 'str'.
|
||
|
inline const char* SkipComma(const char* str) {
|
||
|
const char* comma = strchr(str, ',');
|
||
|
if (comma == nullptr) {
|
||
|
return nullptr;
|
||
|
}
|
||
|
while (IsSpace(*(++comma))) {
|
||
|
}
|
||
|
return comma;
|
||
|
}
|
||
|
|
||
|
// Returns the prefix of 'str' before the first comma in it; returns
|
||
|
// the entire string if it contains no comma.
|
||
|
inline std::string GetPrefixUntilComma(const char* str) {
|
||
|
const char* comma = strchr(str, ',');
|
||
|
return comma == nullptr ? str : std::string(str, comma);
|
||
|
}
|
||
|
|
||
|
// Splits a given string on a given delimiter, populating a given
|
||
|
// vector with the fields.
|
||
|
void SplitString(const ::std::string& str, char delimiter,
|
||
|
::std::vector<::std::string>* dest);
|
||
|
|
||
|
// The default argument to the template below for the case when the user does
|
||
|
// not provide a name generator.
|
||
|
struct DefaultNameGenerator {
|
||
|
template <typename T>
|
||
|
static std::string GetName(int i) {
|
||
|
return StreamableToString(i);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename Provided = DefaultNameGenerator>
|
||
|
struct NameGeneratorSelector {
|
||
|
typedef Provided type;
|
||
|
};
|
||
|
|
||
|
template <typename NameGenerator>
|
||
|
void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
|
||
|
|
||
|
template <typename NameGenerator, typename Types>
|
||
|
void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
|
||
|
result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
|
||
|
GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
|
||
|
i + 1);
|
||
|
}
|
||
|
|
||
|
template <typename NameGenerator, typename Types>
|
||
|
std::vector<std::string> GenerateNames() {
|
||
|
std::vector<std::string> result;
|
||
|
GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
|
||
|
// registers a list of type-parameterized tests with Google Test. The
|
||
|
// return value is insignificant - we just need to return something
|
||
|
// such that we can call this function in a namespace scope.
|
||
|
//
|
||
|
// Implementation note: The GTEST_TEMPLATE_ macro declares a template
|
||
|
// template parameter. It's defined in gtest-type-util.h.
|
||
|
template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
|
||
|
class TypeParameterizedTest {
|
||
|
public:
|
||
|
// 'index' is the index of the test in the type list 'Types'
|
||
|
// specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
|
||
|
// Types). Valid values for 'index' are [0, N - 1] where N is the
|
||
|
// length of Types.
|
||
|
static bool Register(const char* prefix, const CodeLocation& code_location,
|
||
|
const char* case_name, const char* test_names, int index,
|
||
|
const std::vector<std::string>& type_names =
|
||
|
GenerateNames<DefaultNameGenerator, Types>()) {
|
||
|
typedef typename Types::Head Type;
|
||
|
typedef Fixture<Type> FixtureClass;
|
||
|
typedef typename GTEST_BIND_(TestSel, Type) TestClass;
|
||
|
|
||
|
// First, registers the first type-parameterized test in the type
|
||
|
// list.
|
||
|
MakeAndRegisterTestInfo(
|
||
|
(std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
|
||
|
"/" + type_names[static_cast<size_t>(index)])
|
||
|
.c_str(),
|
||
|
StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
|
||
|
GetTypeName<Type>().c_str(),
|
||
|
nullptr, // No value parameter.
|
||
|
code_location, GetTypeId<FixtureClass>(),
|
||
|
SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
|
||
|
code_location.file.c_str(), code_location.line),
|
||
|
SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
|
||
|
code_location.file.c_str(), code_location.line),
|
||
|
new TestFactoryImpl<TestClass>);
|
||
|
|
||
|
// Next, recurses (at compile time) with the tail of the type list.
|
||
|
return TypeParameterizedTest<Fixture, TestSel,
|
||
|
typename Types::Tail>::Register(prefix,
|
||
|
code_location,
|
||
|
case_name,
|
||
|
test_names,
|
||
|
index + 1,
|
||
|
type_names);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// The base case for the compile time recursion.
|
||
|
template <GTEST_TEMPLATE_ Fixture, class TestSel>
|
||
|
class TypeParameterizedTest<Fixture, TestSel, internal::None> {
|
||
|
public:
|
||
|
static bool Register(const char* /*prefix*/, const CodeLocation&,
|
||
|
const char* /*case_name*/, const char* /*test_names*/,
|
||
|
int /*index*/,
|
||
|
const std::vector<std::string>& =
|
||
|
std::vector<std::string>() /*type_names*/) {
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
|
||
|
CodeLocation code_location);
|
||
|
GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
|
||
|
const char* case_name);
|
||
|
|
||
|
// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
|
||
|
// registers *all combinations* of 'Tests' and 'Types' with Google
|
||
|
// Test. The return value is insignificant - we just need to return
|
||
|
// something such that we can call this function in a namespace scope.
|
||
|
template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
|
||
|
class TypeParameterizedTestSuite {
|
||
|
public:
|
||
|
static bool Register(const char* prefix, CodeLocation code_location,
|
||
|
const TypedTestSuitePState* state, const char* case_name,
|
||
|
const char* test_names,
|
||
|
const std::vector<std::string>& type_names =
|
||
|
GenerateNames<DefaultNameGenerator, Types>()) {
|
||
|
RegisterTypeParameterizedTestSuiteInstantiation(case_name);
|
||
|
std::string test_name =
|
||
|
StripTrailingSpaces(GetPrefixUntilComma(test_names));
|
||
|
if (!state->TestExists(test_name)) {
|
||
|
fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
|
||
|
case_name, test_name.c_str(),
|
||
|
FormatFileLocation(code_location.file.c_str(), code_location.line)
|
||
|
.c_str());
|
||
|
fflush(stderr);
|
||
|
posix::Abort();
|
||
|
}
|
||
|
const CodeLocation& test_location = state->GetCodeLocation(test_name);
|
||
|
|
||
|
typedef typename Tests::Head Head;
|
||
|
|
||
|
// First, register the first test in 'Test' for each type in 'Types'.
|
||
|
TypeParameterizedTest<Fixture, Head, Types>::Register(
|
||
|
prefix, test_location, case_name, test_names, 0, type_names);
|
||
|
|
||
|
// Next, recurses (at compile time) with the tail of the test list.
|
||
|
return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
|
||
|
Types>::Register(prefix, code_location,
|
||
|
state, case_name,
|
||
|
SkipComma(test_names),
|
||
|
type_names);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// The base case for the compile time recursion.
|
||
|
template <GTEST_TEMPLATE_ Fixture, typename Types>
|
||
|
class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
|
||
|
public:
|
||
|
static bool Register(const char* /*prefix*/, const CodeLocation&,
|
||
|
const TypedTestSuitePState* /*state*/,
|
||
|
const char* /*case_name*/, const char* /*test_names*/,
|
||
|
const std::vector<std::string>& =
|
||
|
std::vector<std::string>() /*type_names*/) {
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Returns the current OS stack trace as an std::string.
|
||
|
//
|
||
|
// The maximum number of stack frames to be included is specified by
|
||
|
// the gtest_stack_trace_depth flag. The skip_count parameter
|
||
|
// specifies the number of top frames to be skipped, which doesn't
|
||
|
// count against the number of frames to be included.
|
||
|
//
|
||
|
// For example, if Foo() calls Bar(), which in turn calls
|
||
|
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
|
||
|
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
|
||
|
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
|
||
|
|
||
|
// Helpers for suppressing warnings on unreachable code or constant
|
||
|
// condition.
|
||
|
|
||
|
// Always returns true.
|
||
|
GTEST_API_ bool AlwaysTrue();
|
||
|
|
||
|
// Always returns false.
|
||
|
inline bool AlwaysFalse() { return !AlwaysTrue(); }
|
||
|
|
||
|
// Helper for suppressing false warning from Clang on a const char*
|
||
|
// variable declared in a conditional expression always being NULL in
|
||
|
// the else branch.
|
||
|
struct GTEST_API_ ConstCharPtr {
|
||
|
ConstCharPtr(const char* str) : value(str) {}
|
||
|
operator bool() const { return true; }
|
||
|
const char* value;
|
||
|
};
|
||
|
|
||
|
// Helper for declaring std::string within 'if' statement
|
||
|
// in pre C++17 build environment.
|
||
|
struct TrueWithString {
|
||
|
TrueWithString() = default;
|
||
|
explicit TrueWithString(const char* str) : value(str) {}
|
||
|
explicit TrueWithString(const std::string& str) : value(str) {}
|
||
|
explicit operator bool() const { return true; }
|
||
|
std::string value;
|
||
|
};
|
||
|
|
||
|
// A simple Linear Congruential Generator for generating random
|
||
|
// numbers with a uniform distribution. Unlike rand() and srand(), it
|
||
|
// doesn't use global state (and therefore can't interfere with user
|
||
|
// code). Unlike rand_r(), it's portable. An LCG isn't very random,
|
||
|
// but it's good enough for our purposes.
|
||
|
class GTEST_API_ Random {
|
||
|
public:
|
||
|
static const uint32_t kMaxRange = 1u << 31;
|
||
|
|
||
|
explicit Random(uint32_t seed) : state_(seed) {}
|
||
|
|
||
|
void Reseed(uint32_t seed) { state_ = seed; }
|
||
|
|
||
|
// Generates a random number from [0, range). Crashes if 'range' is
|
||
|
// 0 or greater than kMaxRange.
|
||
|
uint32_t Generate(uint32_t range);
|
||
|
|
||
|
private:
|
||
|
uint32_t state_;
|
||
|
Random(const Random&) = delete;
|
||
|
Random& operator=(const Random&) = delete;
|
||
|
};
|
||
|
|
||
|
// Turns const U&, U&, const U, and U all into U.
|
||
|
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
|
||
|
typename std::remove_const<typename std::remove_reference<T>::type>::type
|
||
|
|
||
|
// HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
|
||
|
// that's true if and only if T has methods DebugString() and ShortDebugString()
|
||
|
// that return std::string.
|
||
|
template <typename T>
|
||
|
class HasDebugStringAndShortDebugString {
|
||
|
private:
|
||
|
template <typename C>
|
||
|
static auto CheckDebugString(C*) -> typename std::is_same<
|
||
|
std::string, decltype(std::declval<const C>().DebugString())>::type;
|
||
|
template <typename>
|
||
|
static std::false_type CheckDebugString(...);
|
||
|
|
||
|
template <typename C>
|
||
|
static auto CheckShortDebugString(C*) -> typename std::is_same<
|
||
|
std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
|
||
|
template <typename>
|
||
|
static std::false_type CheckShortDebugString(...);
|
||
|
|
||
|
using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
|
||
|
using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
|
||
|
|
||
|
public:
|
||
|
static constexpr bool value =
|
||
|
HasDebugStringType::value && HasShortDebugStringType::value;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
constexpr bool HasDebugStringAndShortDebugString<T>::value;
|
||
|
|
||
|
// When the compiler sees expression IsContainerTest<C>(0), if C is an
|
||
|
// STL-style container class, the first overload of IsContainerTest
|
||
|
// will be viable (since both C::iterator* and C::const_iterator* are
|
||
|
// valid types and NULL can be implicitly converted to them). It will
|
||
|
// be picked over the second overload as 'int' is a perfect match for
|
||
|
// the type of argument 0. If C::iterator or C::const_iterator is not
|
||
|
// a valid type, the first overload is not viable, and the second
|
||
|
// overload will be picked. Therefore, we can determine whether C is
|
||
|
// a container class by checking the type of IsContainerTest<C>(0).
|
||
|
// The value of the expression is insignificant.
|
||
|
//
|
||
|
// In C++11 mode we check the existence of a const_iterator and that an
|
||
|
// iterator is properly implemented for the container.
|
||
|
//
|
||
|
// For pre-C++11 that we look for both C::iterator and C::const_iterator.
|
||
|
// The reason is that C++ injects the name of a class as a member of the
|
||
|
// class itself (e.g. you can refer to class iterator as either
|
||
|
// 'iterator' or 'iterator::iterator'). If we look for C::iterator
|
||
|
// only, for example, we would mistakenly think that a class named
|
||
|
// iterator is an STL container.
|
||
|
//
|
||
|
// Also note that the simpler approach of overloading
|
||
|
// IsContainerTest(typename C::const_iterator*) and
|
||
|
// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
|
||
|
typedef int IsContainer;
|
||
|
template <class C,
|
||
|
class Iterator = decltype(::std::declval<const C&>().begin()),
|
||
|
class = decltype(::std::declval<const C&>().end()),
|
||
|
class = decltype(++::std::declval<Iterator&>()),
|
||
|
class = decltype(*::std::declval<Iterator>()),
|
||
|
class = typename C::const_iterator>
|
||
|
IsContainer IsContainerTest(int /* dummy */) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
typedef char IsNotContainer;
|
||
|
template <class C>
|
||
|
IsNotContainer IsContainerTest(long /* dummy */) {
|
||
|
return '\0';
|
||
|
}
|
||
|
|
||
|
// Trait to detect whether a type T is a hash table.
|
||
|
// The heuristic used is that the type contains an inner type `hasher` and does
|
||
|
// not contain an inner type `reverse_iterator`.
|
||
|
// If the container is iterable in reverse, then order might actually matter.
|
||
|
template <typename T>
|
||
|
struct IsHashTable {
|
||
|
private:
|
||
|
template <typename U>
|
||
|
static char test(typename U::hasher*, typename U::reverse_iterator*);
|
||
|
template <typename U>
|
||
|
static int test(typename U::hasher*, ...);
|
||
|
template <typename U>
|
||
|
static char test(...);
|
||
|
|
||
|
public:
|
||
|
static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
const bool IsHashTable<T>::value;
|
||
|
|
||
|
template <typename C,
|
||
|
bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
|
||
|
struct IsRecursiveContainerImpl;
|
||
|
|
||
|
template <typename C>
|
||
|
struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
|
||
|
|
||
|
// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
|
||
|
// obey the same inconsistencies as the IsContainerTest, namely check if
|
||
|
// something is a container is relying on only const_iterator in C++11 and
|
||
|
// is relying on both const_iterator and iterator otherwise
|
||
|
template <typename C>
|
||
|
struct IsRecursiveContainerImpl<C, true> {
|
||
|
using value_type = decltype(*std::declval<typename C::const_iterator>());
|
||
|
using type =
|
||
|
std::is_same<typename std::remove_const<
|
||
|
typename std::remove_reference<value_type>::type>::type,
|
||
|
C>;
|
||
|
};
|
||
|
|
||
|
// IsRecursiveContainer<Type> is a unary compile-time predicate that
|
||
|
// evaluates whether C is a recursive container type. A recursive container
|
||
|
// type is a container type whose value_type is equal to the container type
|
||
|
// itself. An example for a recursive container type is
|
||
|
// boost::filesystem::path, whose iterator has a value_type that is equal to
|
||
|
// boost::filesystem::path.
|
||
|
template <typename C>
|
||
|
struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
|
||
|
|
||
|
// Utilities for native arrays.
|
||
|
|
||
|
// ArrayEq() compares two k-dimensional native arrays using the
|
||
|
// elements' operator==, where k can be any integer >= 0. When k is
|
||
|
// 0, ArrayEq() degenerates into comparing a single pair of values.
|
||
|
|
||
|
template <typename T, typename U>
|
||
|
bool ArrayEq(const T* lhs, size_t size, const U* rhs);
|
||
|
|
||
|
// This generic version is used when k is 0.
|
||
|
template <typename T, typename U>
|
||
|
inline bool ArrayEq(const T& lhs, const U& rhs) {
|
||
|
return lhs == rhs;
|
||
|
}
|
||
|
|
||
|
// This overload is used when k >= 1.
|
||
|
template <typename T, typename U, size_t N>
|
||
|
inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
|
||
|
return internal::ArrayEq(lhs, N, rhs);
|
||
|
}
|
||
|
|
||
|
// This helper reduces code bloat. If we instead put its logic inside
|
||
|
// the previous ArrayEq() function, arrays with different sizes would
|
||
|
// lead to different copies of the template code.
|
||
|
template <typename T, typename U>
|
||
|
bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
|
||
|
for (size_t i = 0; i != size; i++) {
|
||
|
if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Finds the first element in the iterator range [begin, end) that
|
||
|
// equals elem. Element may be a native array type itself.
|
||
|
template <typename Iter, typename Element>
|
||
|
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
|
||
|
for (Iter it = begin; it != end; ++it) {
|
||
|
if (internal::ArrayEq(*it, elem)) return it;
|
||
|
}
|
||
|
return end;
|
||
|
}
|
||
|
|
||
|
// CopyArray() copies a k-dimensional native array using the elements'
|
||
|
// operator=, where k can be any integer >= 0. When k is 0,
|
||
|
// CopyArray() degenerates into copying a single value.
|
||
|
|
||
|
template <typename T, typename U>
|
||
|
void CopyArray(const T* from, size_t size, U* to);
|
||
|
|
||
|
// This generic version is used when k is 0.
|
||
|
template <typename T, typename U>
|
||
|
inline void CopyArray(const T& from, U* to) {
|
||
|
*to = from;
|
||
|
}
|
||
|
|
||
|
// This overload is used when k >= 1.
|
||
|
template <typename T, typename U, size_t N>
|
||
|
inline void CopyArray(const T (&from)[N], U (*to)[N]) {
|
||
|
internal::CopyArray(from, N, *to);
|
||
|
}
|
||
|
|
||
|
// This helper reduces code bloat. If we instead put its logic inside
|
||
|
// the previous CopyArray() function, arrays with different sizes
|
||
|
// would lead to different copies of the template code.
|
||
|
template <typename T, typename U>
|
||
|
void CopyArray(const T* from, size_t size, U* to) {
|
||
|
for (size_t i = 0; i != size; i++) {
|
||
|
internal::CopyArray(from[i], to + i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The relation between an NativeArray object (see below) and the
|
||
|
// native array it represents.
|
||
|
// We use 2 different structs to allow non-copyable types to be used, as long
|
||
|
// as RelationToSourceReference() is passed.
|
||
|
struct RelationToSourceReference {};
|
||
|
struct RelationToSourceCopy {};
|
||
|
|
||
|
// Adapts a native array to a read-only STL-style container. Instead
|
||
|
// of the complete STL container concept, this adaptor only implements
|
||
|
// members useful for Google Mock's container matchers. New members
|
||
|
// should be added as needed. To simplify the implementation, we only
|
||
|
// support Element being a raw type (i.e. having no top-level const or
|
||
|
// reference modifier). It's the client's responsibility to satisfy
|
||
|
// this requirement. Element can be an array type itself (hence
|
||
|
// multi-dimensional arrays are supported).
|
||
|
template <typename Element>
|
||
|
class NativeArray {
|
||
|
public:
|
||
|
// STL-style container typedefs.
|
||
|
typedef Element value_type;
|
||
|
typedef Element* iterator;
|
||
|
typedef const Element* const_iterator;
|
||
|
|
||
|
// Constructs from a native array. References the source.
|
||
|
NativeArray(const Element* array, size_t count, RelationToSourceReference) {
|
||
|
InitRef(array, count);
|
||
|
}
|
||
|
|
||
|
// Constructs from a native array. Copies the source.
|
||
|
NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
|
||
|
InitCopy(array, count);
|
||
|
}
|
||
|
|
||
|
// Copy constructor.
|
||
|
NativeArray(const NativeArray& rhs) {
|
||
|
(this->*rhs.clone_)(rhs.array_, rhs.size_);
|
||
|
}
|
||
|
|
||
|
~NativeArray() {
|
||
|
if (clone_ != &NativeArray::InitRef) delete[] array_;
|
||
|
}
|
||
|
|
||
|
// STL-style container methods.
|
||
|
size_t size() const { return size_; }
|
||
|
const_iterator begin() const { return array_; }
|
||
|
const_iterator end() const { return array_ + size_; }
|
||
|
bool operator==(const NativeArray& rhs) const {
|
||
|
return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
static_assert(!std::is_const<Element>::value, "Type must not be const");
|
||
|
static_assert(!std::is_reference<Element>::value,
|
||
|
"Type must not be a reference");
|
||
|
|
||
|
// Initializes this object with a copy of the input.
|
||
|
void InitCopy(const Element* array, size_t a_size) {
|
||
|
Element* const copy = new Element[a_size];
|
||
|
CopyArray(array, a_size, copy);
|
||
|
array_ = copy;
|
||
|
size_ = a_size;
|
||
|
clone_ = &NativeArray::InitCopy;
|
||
|
}
|
||
|
|
||
|
// Initializes this object with a reference of the input.
|
||
|
void InitRef(const Element* array, size_t a_size) {
|
||
|
array_ = array;
|
||
|
size_ = a_size;
|
||
|
clone_ = &NativeArray::InitRef;
|
||
|
}
|
||
|
|
||
|
const Element* array_;
|
||
|
size_t size_;
|
||
|
void (NativeArray::*clone_)(const Element*, size_t);
|
||
|
};
|
||
|
|
||
|
// Backport of std::index_sequence.
|
||
|
template <size_t... Is>
|
||
|
struct IndexSequence {
|
||
|
using type = IndexSequence;
|
||
|
};
|
||
|
|
||
|
// Double the IndexSequence, and one if plus_one is true.
|
||
|
template <bool plus_one, typename T, size_t sizeofT>
|
||
|
struct DoubleSequence;
|
||
|
template <size_t... I, size_t sizeofT>
|
||
|
struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
|
||
|
using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
|
||
|
};
|
||
|
template <size_t... I, size_t sizeofT>
|
||
|
struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
|
||
|
using type = IndexSequence<I..., (sizeofT + I)...>;
|
||
|
};
|
||
|
|
||
|
// Backport of std::make_index_sequence.
|
||
|
// It uses O(ln(N)) instantiation depth.
|
||
|
template <size_t N>
|
||
|
struct MakeIndexSequenceImpl
|
||
|
: DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
|
||
|
N / 2>::type {};
|
||
|
|
||
|
template <>
|
||
|
struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
|
||
|
|
||
|
template <size_t N>
|
||
|
using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
|
||
|
|
||
|
template <typename... T>
|
||
|
using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
|
||
|
|
||
|
template <size_t>
|
||
|
struct Ignore {
|
||
|
Ignore(...); // NOLINT
|
||
|
};
|
||
|
|
||
|
template <typename>
|
||
|
struct ElemFromListImpl;
|
||
|
template <size_t... I>
|
||
|
struct ElemFromListImpl<IndexSequence<I...>> {
|
||
|
// We make Ignore a template to solve a problem with MSVC.
|
||
|
// A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
|
||
|
// MSVC doesn't understand how to deal with that pack expansion.
|
||
|
// Use `0 * I` to have a single instantiation of Ignore.
|
||
|
template <typename R>
|
||
|
static R Apply(Ignore<0 * I>..., R (*)(), ...);
|
||
|
};
|
||
|
|
||
|
template <size_t N, typename... T>
|
||
|
struct ElemFromList {
|
||
|
using type =
|
||
|
decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
|
||
|
static_cast<T (*)()>(nullptr)...));
|
||
|
};
|
||
|
|
||
|
struct FlatTupleConstructTag {};
|
||
|
|
||
|
template <typename... T>
|
||
|
class FlatTuple;
|
||
|
|
||
|
template <typename Derived, size_t I>
|
||
|
struct FlatTupleElemBase;
|
||
|
|
||
|
template <typename... T, size_t I>
|
||
|
struct FlatTupleElemBase<FlatTuple<T...>, I> {
|
||
|
using value_type = typename ElemFromList<I, T...>::type;
|
||
|
FlatTupleElemBase() = default;
|
||
|
template <typename Arg>
|
||
|
explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
|
||
|
: value(std::forward<Arg>(t)) {}
|
||
|
value_type value;
|
||
|
};
|
||
|
|
||
|
template <typename Derived, typename Idx>
|
||
|
struct FlatTupleBase;
|
||
|
|
||
|
template <size_t... Idx, typename... T>
|
||
|
struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
|
||
|
: FlatTupleElemBase<FlatTuple<T...>, Idx>... {
|
||
|
using Indices = IndexSequence<Idx...>;
|
||
|
FlatTupleBase() = default;
|
||
|
template <typename... Args>
|
||
|
explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
|
||
|
: FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
|
||
|
std::forward<Args>(args))... {}
|
||
|
|
||
|
template <size_t I>
|
||
|
const typename ElemFromList<I, T...>::type& Get() const {
|
||
|
return FlatTupleElemBase<FlatTuple<T...>, I>::value;
|
||
|
}
|
||
|
|
||
|
template <size_t I>
|
||
|
typename ElemFromList<I, T...>::type& Get() {
|
||
|
return FlatTupleElemBase<FlatTuple<T...>, I>::value;
|
||
|
}
|
||
|
|
||
|
template <typename F>
|
||
|
auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
|
||
|
return std::forward<F>(f)(Get<Idx>()...);
|
||
|
}
|
||
|
|
||
|
template <typename F>
|
||
|
auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
|
||
|
return std::forward<F>(f)(Get<Idx>()...);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Analog to std::tuple but with different tradeoffs.
|
||
|
// This class minimizes the template instantiation depth, thus allowing more
|
||
|
// elements than std::tuple would. std::tuple has been seen to require an
|
||
|
// instantiation depth of more than 10x the number of elements in some
|
||
|
// implementations.
|
||
|
// FlatTuple and ElemFromList are not recursive and have a fixed depth
|
||
|
// regardless of T...
|
||
|
// MakeIndexSequence, on the other hand, it is recursive but with an
|
||
|
// instantiation depth of O(ln(N)).
|
||
|
template <typename... T>
|
||
|
class FlatTuple
|
||
|
: private FlatTupleBase<FlatTuple<T...>,
|
||
|
typename MakeIndexSequence<sizeof...(T)>::type> {
|
||
|
using Indices = typename FlatTupleBase<
|
||
|
FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
|
||
|
|
||
|
public:
|
||
|
FlatTuple() = default;
|
||
|
template <typename... Args>
|
||
|
explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
|
||
|
: FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
|
||
|
|
||
|
using FlatTuple::FlatTupleBase::Apply;
|
||
|
using FlatTuple::FlatTupleBase::Get;
|
||
|
};
|
||
|
|
||
|
// Utility functions to be called with static_assert to induce deprecation
|
||
|
// warnings.
|
||
|
GTEST_INTERNAL_DEPRECATED(
|
||
|
"INSTANTIATE_TEST_CASE_P is deprecated, please use "
|
||
|
"INSTANTIATE_TEST_SUITE_P")
|
||
|
constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
|
||
|
|
||
|
GTEST_INTERNAL_DEPRECATED(
|
||
|
"TYPED_TEST_CASE_P is deprecated, please use "
|
||
|
"TYPED_TEST_SUITE_P")
|
||
|
constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
|
||
|
|
||
|
GTEST_INTERNAL_DEPRECATED(
|
||
|
"TYPED_TEST_CASE is deprecated, please use "
|
||
|
"TYPED_TEST_SUITE")
|
||
|
constexpr bool TypedTestCaseIsDeprecated() { return true; }
|
||
|
|
||
|
GTEST_INTERNAL_DEPRECATED(
|
||
|
"REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
|
||
|
"REGISTER_TYPED_TEST_SUITE_P")
|
||
|
constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
|
||
|
|
||
|
GTEST_INTERNAL_DEPRECATED(
|
||
|
"INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
|
||
|
"INSTANTIATE_TYPED_TEST_SUITE_P")
|
||
|
constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace testing
|
||
|
|
||
|
namespace std {
|
||
|
// Some standard library implementations use `struct tuple_size` and some use
|
||
|
// `class tuple_size`. Clang warns about the mismatch.
|
||
|
// https://reviews.llvm.org/D55466
|
||
|
#ifdef __clang__
|
||
|
#pragma clang diagnostic push
|
||
|
#pragma clang diagnostic ignored "-Wmismatched-tags"
|
||
|
#endif
|
||
|
template <typename... Ts>
|
||
|
struct tuple_size<testing::internal::FlatTuple<Ts...>>
|
||
|
: std::integral_constant<size_t, sizeof...(Ts)> {};
|
||
|
#ifdef __clang__
|
||
|
#pragma clang diagnostic pop
|
||
|
#endif
|
||
|
} // namespace std
|
||
|
|
||
|
#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
|
||
|
::testing::internal::AssertHelper(result_type, file, line, message) = \
|
||
|
::testing::Message()
|
||
|
|
||
|
#define GTEST_MESSAGE_(message, result_type) \
|
||
|
GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
|
||
|
|
||
|
#define GTEST_FATAL_FAILURE_(message) \
|
||
|
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
|
||
|
|
||
|
#define GTEST_NONFATAL_FAILURE_(message) \
|
||
|
GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
|
||
|
|
||
|
#define GTEST_SUCCESS_(message) \
|
||
|
GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
|
||
|
|
||
|
#define GTEST_SKIP_(message) \
|
||
|
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
|
||
|
|
||
|
// Suppress MSVC warning 4072 (unreachable code) for the code following
|
||
|
// statement if it returns or throws (or doesn't return or throw in some
|
||
|
// situations).
|
||
|
// NOTE: The "else" is important to keep this expansion to prevent a top-level
|
||
|
// "else" from attaching to our "if".
|
||
|
#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
|
||
|
if (::testing::internal::AlwaysTrue()) { \
|
||
|
statement; \
|
||
|
} else /* NOLINT */ \
|
||
|
static_assert(true, "") // User must have a semicolon after expansion.
|
||
|
|
||
|
#if GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
namespace testing {
|
||
|
namespace internal {
|
||
|
|
||
|
class NeverThrown {
|
||
|
public:
|
||
|
const char* what() const noexcept {
|
||
|
return "this exception should never be thrown";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace testing
|
||
|
|
||
|
#if GTEST_HAS_RTTI
|
||
|
|
||
|
#define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
|
||
|
|
||
|
#else // GTEST_HAS_RTTI
|
||
|
|
||
|
#define GTEST_EXCEPTION_TYPE_(e) \
|
||
|
std::string { "an std::exception-derived error" }
|
||
|
|
||
|
#endif // GTEST_HAS_RTTI
|
||
|
|
||
|
#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
|
||
|
catch (typename std::conditional< \
|
||
|
std::is_same<typename std::remove_cv<typename std::remove_reference< \
|
||
|
expected_exception>::type>::type, \
|
||
|
std::exception>::value, \
|
||
|
const ::testing::internal::NeverThrown&, const std::exception&>::type \
|
||
|
e) { \
|
||
|
gtest_msg.value = "Expected: " #statement \
|
||
|
" throws an exception of type " #expected_exception \
|
||
|
".\n Actual: it throws "; \
|
||
|
gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
|
||
|
gtest_msg.value += " with description \""; \
|
||
|
gtest_msg.value += e.what(); \
|
||
|
gtest_msg.value += "\"."; \
|
||
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
|
||
|
}
|
||
|
|
||
|
#else // GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
|
||
|
|
||
|
#endif // GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
|
||
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
|
if (::testing::internal::TrueWithString gtest_msg{}) { \
|
||
|
bool gtest_caught_expected = false; \
|
||
|
try { \
|
||
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
|
} catch (expected_exception const&) { \
|
||
|
gtest_caught_expected = true; \
|
||
|
} \
|
||
|
GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
|
||
|
catch (...) { \
|
||
|
gtest_msg.value = "Expected: " #statement \
|
||
|
" throws an exception of type " #expected_exception \
|
||
|
".\n Actual: it throws a different type."; \
|
||
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
|
||
|
} \
|
||
|
if (!gtest_caught_expected) { \
|
||
|
gtest_msg.value = "Expected: " #statement \
|
||
|
" throws an exception of type " #expected_exception \
|
||
|
".\n Actual: it throws nothing."; \
|
||
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
|
||
|
} \
|
||
|
} else /*NOLINT*/ \
|
||
|
GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \
|
||
|
: fail(gtest_msg.value.c_str())
|
||
|
|
||
|
#if GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
|
||
|
catch (std::exception const& e) { \
|
||
|
gtest_msg.value = "it throws "; \
|
||
|
gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
|
||
|
gtest_msg.value += " with description \""; \
|
||
|
gtest_msg.value += e.what(); \
|
||
|
gtest_msg.value += "\"."; \
|
||
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
|
||
|
}
|
||
|
|
||
|
#else // GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
|
||
|
|
||
|
#endif // GTEST_HAS_EXCEPTIONS
|
||
|
|
||
|
#define GTEST_TEST_NO_THROW_(statement, fail) \
|
||
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
|
if (::testing::internal::TrueWithString gtest_msg{}) { \
|
||
|
try { \
|
||
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
|
} \
|
||
|
GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
|
||
|
catch (...) { \
|
||
|
gtest_msg.value = "it throws."; \
|
||
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
|
||
|
} \
|
||
|
} else \
|
||
|
GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \
|
||
|
: fail(("Expected: " #statement " doesn't throw an exception.\n" \
|
||
|
" Actual: " + \
|
||
|
gtest_msg.value) \
|
||
|
.c_str())
|
||
|
|
||
|
#define GTEST_TEST_ANY_THROW_(statement, fail) \
|
||
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
|
if (::testing::internal::AlwaysTrue()) { \
|
||
|
bool gtest_caught_any = false; \
|
||
|
try { \
|
||
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
|
} catch (...) { \
|
||
|
gtest_caught_any = true; \
|
||
|
} \
|
||
|
if (!gtest_caught_any) { \
|
||
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
|
||
|
} \
|
||
|
} else \
|
||
|
GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \
|
||
|
: fail("Expected: " #statement \
|
||
|
" throws an exception.\n" \
|
||
|
" Actual: it doesn't.")
|
||
|
|
||
|
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
|
||
|
// either a boolean expression or an AssertionResult. text is a textual
|
||
|
// representation of expression as it was passed into the EXPECT_TRUE.
|
||
|
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
|
||
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
|
if (const ::testing::AssertionResult gtest_ar_ = \
|
||
|
::testing::AssertionResult(expression)) \
|
||
|
; \
|
||
|
else \
|
||
|
fail(::testing::internal::GetBoolAssertionFailureMessage( \
|
||
|
gtest_ar_, text, #actual, #expected) \
|
||
|
.c_str())
|
||
|
|
||
|
#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
|
||
|
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
|
if (::testing::internal::AlwaysTrue()) { \
|
||
|
::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
|
||
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
|
if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
|
||
|
goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
|
||
|
} \
|
||
|
} else \
|
||
|
GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \
|
||
|
: fail("Expected: " #statement \
|
||
|
" doesn't generate new fatal " \
|
||
|
"failures in the current thread.\n" \
|
||
|
" Actual: it does.")
|
||
|
|
||
|
// Expands to the name of the class that implements the given test.
|
||
|
#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
|
||
|
test_suite_name##_##test_name##_Test
|
||
|
|
||
|
// Helper macro for defining tests.
|
||
|
#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
|
||
|
static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
|
||
|
"test_suite_name must not be empty"); \
|
||
|
static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
|
||
|
"test_name must not be empty"); \
|
||
|
class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
|
||
|
: public parent_class { \
|
||
|
public: \
|
||
|
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
|
||
|
~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
|
||
|
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
|
||
|
(const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \
|
||
|
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
|
||
|
const GTEST_TEST_CLASS_NAME_(test_suite_name, \
|
||
|
test_name) &) = delete; /* NOLINT */ \
|
||
|
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
|
||
|
(GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
|
||
|
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
|
||
|
GTEST_TEST_CLASS_NAME_(test_suite_name, \
|
||
|
test_name) &&) noexcept = delete; /* NOLINT */ \
|
||
|
\
|
||
|
private: \
|
||
|
void TestBody() override; \
|
||
|
static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
|
||
|
}; \
|
||
|
\
|
||
|
::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
|
||
|
test_name)::test_info_ = \
|
||
|
::testing::internal::MakeAndRegisterTestInfo( \
|
||
|
#test_suite_name, #test_name, nullptr, nullptr, \
|
||
|
::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
|
||
|
::testing::internal::SuiteApiResolver< \
|
||
|
parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
|
||
|
::testing::internal::SuiteApiResolver< \
|
||
|
parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
|
||
|
new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
|
||
|
test_suite_name, test_name)>); \
|
||
|
void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
|
||
|
|
||
|
#endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|