osb/source/test/gtest/internal/gtest-internal.h

1572 lines
62 KiB
C
Raw Normal View History

2023-07-14 11:45:11 +00:00
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The Google C++ Testing and Mocking Framework (Google Test)
//
// This header file declares functions and macros used internally by
// Google Test. They are subject to change without notice.
// IWYU pragma: private, include "gtest/gtest.h"
// IWYU pragma: friend gtest/.*
// IWYU pragma: friend gmock/.*
#ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
#define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
#include "gtest/internal/gtest-port.h"
#if GTEST_OS_LINUX
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#endif // GTEST_OS_LINUX
#if GTEST_HAS_EXCEPTIONS
#include <stdexcept>
#endif
#include <ctype.h>
#include <float.h>
#include <string.h>
#include <cstdint>
#include <functional>
#include <iomanip>
#include <limits>
#include <map>
#include <set>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gtest/gtest-message.h"
#include "gtest/internal/gtest-filepath.h"
#include "gtest/internal/gtest-string.h"
#include "gtest/internal/gtest-type-util.h"
// Due to C++ preprocessor weirdness, we need double indirection to
// concatenate two tokens when one of them is __LINE__. Writing
//
// foo ## __LINE__
//
// will result in the token foo__LINE__, instead of foo followed by
// the current line number. For more details, see
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
// Stringifies its argument.
// Work around a bug in visual studio which doesn't accept code like this:
//
// #define GTEST_STRINGIFY_(name) #name
// #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
// MACRO(, x, y)
//
// Complaining about the argument to GTEST_STRINGIFY_ being empty.
// This is allowed by the spec.
#define GTEST_STRINGIFY_HELPER_(name, ...) #name
#define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
namespace proto2 {
class MessageLite;
}
namespace testing {
// Forward declarations.
class AssertionResult; // Result of an assertion.
class Message; // Represents a failure message.
class Test; // Represents a test.
class TestInfo; // Information about a test.
class TestPartResult; // Result of a test part.
class UnitTest; // A collection of test suites.
template <typename T>
::std::string PrintToString(const T& value);
namespace internal {
struct TraceInfo; // Information about a trace point.
class TestInfoImpl; // Opaque implementation of TestInfo
class UnitTestImpl; // Opaque implementation of UnitTest
// The text used in failure messages to indicate the start of the
// stack trace.
GTEST_API_ extern const char kStackTraceMarker[];
// An IgnoredValue object can be implicitly constructed from ANY value.
class IgnoredValue {
struct Sink {};
public:
// This constructor template allows any value to be implicitly
// converted to IgnoredValue. The object has no data member and
// doesn't try to remember anything about the argument. We
// deliberately omit the 'explicit' keyword in order to allow the
// conversion to be implicit.
// Disable the conversion if T already has a magical conversion operator.
// Otherwise we get ambiguity.
template <typename T,
typename std::enable_if<!std::is_convertible<T, Sink>::value,
int>::type = 0>
IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
};
// Appends the user-supplied message to the Google-Test-generated message.
GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
const Message& user_msg);
#if GTEST_HAS_EXCEPTIONS
GTEST_DISABLE_MSC_WARNINGS_PUSH_(
4275 /* an exported class was derived from a class that was not exported */)
// This exception is thrown by (and only by) a failed Google Test
// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
// are enabled). We derive it from std::runtime_error, which is for
// errors presumably detectable only at run time. Since
// std::runtime_error inherits from std::exception, many testing
// frameworks know how to extract and print the message inside it.
class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
public:
explicit GoogleTestFailureException(const TestPartResult& failure);
};
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
#endif // GTEST_HAS_EXCEPTIONS
namespace edit_distance {
// Returns the optimal edits to go from 'left' to 'right'.
// All edits cost the same, with replace having lower priority than
// add/remove.
// Simple implementation of the Wagner-Fischer algorithm.
// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
enum EditType { kMatch, kAdd, kRemove, kReplace };
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
const std::vector<size_t>& left, const std::vector<size_t>& right);
// Same as above, but the input is represented as strings.
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
const std::vector<std::string>& left,
const std::vector<std::string>& right);
// Create a diff of the input strings in Unified diff format.
GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
const std::vector<std::string>& right,
size_t context = 2);
} // namespace edit_distance
// Constructs and returns the message for an equality assertion
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
//
// The first four parameters are the expressions used in the assertion
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
// where foo is 5 and bar is 6, we have:
//
// expected_expression: "foo"
// actual_expression: "bar"
// expected_value: "5"
// actual_value: "6"
//
// The ignoring_case parameter is true if and only if the assertion is a
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
// be inserted into the message.
GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
const char* actual_expression,
const std::string& expected_value,
const std::string& actual_value,
bool ignoring_case);
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
GTEST_API_ std::string GetBoolAssertionFailureMessage(
const AssertionResult& assertion_result, const char* expression_text,
const char* actual_predicate_value, const char* expected_predicate_value);
// This template class represents an IEEE floating-point number
// (either single-precision or double-precision, depending on the
// template parameters).
//
// The purpose of this class is to do more sophisticated number
// comparison. (Due to round-off error, etc, it's very unlikely that
// two floating-points will be equal exactly. Hence a naive
// comparison by the == operation often doesn't work.)
//
// Format of IEEE floating-point:
//
// The most-significant bit being the leftmost, an IEEE
// floating-point looks like
//
// sign_bit exponent_bits fraction_bits
//
// Here, sign_bit is a single bit that designates the sign of the
// number.
//
// For float, there are 8 exponent bits and 23 fraction bits.
//
// For double, there are 11 exponent bits and 52 fraction bits.
//
// More details can be found at
// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
//
// Template parameter:
//
// RawType: the raw floating-point type (either float or double)
template <typename RawType>
class FloatingPoint {
public:
// Defines the unsigned integer type that has the same size as the
// floating point number.
typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
// Constants.
// # of bits in a number.
static const size_t kBitCount = 8 * sizeof(RawType);
// # of fraction bits in a number.
static const size_t kFractionBitCount =
std::numeric_limits<RawType>::digits - 1;
// # of exponent bits in a number.
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
// The mask for the sign bit.
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
// The mask for the fraction bits.
static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
(kExponentBitCount + 1);
// The mask for the exponent bits.
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
// How many ULP's (Units in the Last Place) we want to tolerate when
// comparing two numbers. The larger the value, the more error we
// allow. A 0 value means that two numbers must be exactly the same
// to be considered equal.
//
// The maximum error of a single floating-point operation is 0.5
// units in the last place. On Intel CPU's, all floating-point
// calculations are done with 80-bit precision, while double has 64
// bits. Therefore, 4 should be enough for ordinary use.
//
// See the following article for more details on ULP:
// http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
static const uint32_t kMaxUlps = 4;
// Constructs a FloatingPoint from a raw floating-point number.
//
// On an Intel CPU, passing a non-normalized NAN (Not a Number)
// around may change its bits, although the new value is guaranteed
// to be also a NAN. Therefore, don't expect this constructor to
// preserve the bits in x when x is a NAN.
explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
// Static methods
// Reinterprets a bit pattern as a floating-point number.
//
// This function is needed to test the AlmostEquals() method.
static RawType ReinterpretBits(const Bits bits) {
FloatingPoint fp(0);
fp.u_.bits_ = bits;
return fp.u_.value_;
}
// Returns the floating-point number that represent positive infinity.
static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
// Returns the maximum representable finite floating-point number.
static RawType Max();
// Non-static methods
// Returns the bits that represents this number.
const Bits& bits() const { return u_.bits_; }
// Returns the exponent bits of this number.
Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
// Returns the fraction bits of this number.
Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
// Returns the sign bit of this number.
Bits sign_bit() const { return kSignBitMask & u_.bits_; }
// Returns true if and only if this is NAN (not a number).
bool is_nan() const {
// It's a NAN if the exponent bits are all ones and the fraction
// bits are not entirely zeros.
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
}
// Returns true if and only if this number is at most kMaxUlps ULP's away
// from rhs. In particular, this function:
//
// - returns false if either number is (or both are) NAN.
// - treats really large numbers as almost equal to infinity.
// - thinks +0.0 and -0.0 are 0 DLP's apart.
bool AlmostEquals(const FloatingPoint& rhs) const {
// The IEEE standard says that any comparison operation involving
// a NAN must return false.
if (is_nan() || rhs.is_nan()) return false;
return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
kMaxUlps;
}
private:
// The data type used to store the actual floating-point number.
union FloatingPointUnion {
RawType value_; // The raw floating-point number.
Bits bits_; // The bits that represent the number.
};
// Converts an integer from the sign-and-magnitude representation to
// the biased representation. More precisely, let N be 2 to the
// power of (kBitCount - 1), an integer x is represented by the
// unsigned number x + N.
//
// For instance,
//
// -N + 1 (the most negative number representable using
// sign-and-magnitude) is represented by 1;
// 0 is represented by N; and
// N - 1 (the biggest number representable using
// sign-and-magnitude) is represented by 2N - 1.
//
// Read http://en.wikipedia.org/wiki/Signed_number_representations
// for more details on signed number representations.
static Bits SignAndMagnitudeToBiased(const Bits& sam) {
if (kSignBitMask & sam) {
// sam represents a negative number.
return ~sam + 1;
} else {
// sam represents a positive number.
return kSignBitMask | sam;
}
}
// Given two numbers in the sign-and-magnitude representation,
// returns the distance between them as an unsigned number.
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
const Bits& sam2) {
const Bits biased1 = SignAndMagnitudeToBiased(sam1);
const Bits biased2 = SignAndMagnitudeToBiased(sam2);
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
}
FloatingPointUnion u_;
};
// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
// macro defined by <windows.h>.
template <>
inline float FloatingPoint<float>::Max() {
return FLT_MAX;
}
template <>
inline double FloatingPoint<double>::Max() {
return DBL_MAX;
}
// Typedefs the instances of the FloatingPoint template class that we
// care to use.
typedef FloatingPoint<float> Float;
typedef FloatingPoint<double> Double;
// In order to catch the mistake of putting tests that use different
// test fixture classes in the same test suite, we need to assign
// unique IDs to fixture classes and compare them. The TypeId type is
// used to hold such IDs. The user should treat TypeId as an opaque
// type: the only operation allowed on TypeId values is to compare
// them for equality using the == operator.
typedef const void* TypeId;
template <typename T>
class TypeIdHelper {
public:
// dummy_ must not have a const type. Otherwise an overly eager
// compiler (e.g. MSVC 7.1 & 8.0) may try to merge
// TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
static bool dummy_;
};
template <typename T>
bool TypeIdHelper<T>::dummy_ = false;
// GetTypeId<T>() returns the ID of type T. Different values will be
// returned for different types. Calling the function twice with the
// same type argument is guaranteed to return the same ID.
template <typename T>
TypeId GetTypeId() {
// The compiler is required to allocate a different
// TypeIdHelper<T>::dummy_ variable for each T used to instantiate
// the template. Therefore, the address of dummy_ is guaranteed to
// be unique.
return &(TypeIdHelper<T>::dummy_);
}
// Returns the type ID of ::testing::Test. Always call this instead
// of GetTypeId< ::testing::Test>() to get the type ID of
// ::testing::Test, as the latter may give the wrong result due to a
// suspected linker bug when compiling Google Test as a Mac OS X
// framework.
GTEST_API_ TypeId GetTestTypeId();
// Defines the abstract factory interface that creates instances
// of a Test object.
class TestFactoryBase {
public:
virtual ~TestFactoryBase() {}
// Creates a test instance to run. The instance is both created and destroyed
// within TestInfoImpl::Run()
virtual Test* CreateTest() = 0;
protected:
TestFactoryBase() {}
private:
TestFactoryBase(const TestFactoryBase&) = delete;
TestFactoryBase& operator=(const TestFactoryBase&) = delete;
};
// This class provides implementation of TestFactoryBase interface.
// It is used in TEST and TEST_F macros.
template <class TestClass>
class TestFactoryImpl : public TestFactoryBase {
public:
Test* CreateTest() override { return new TestClass; }
};
#if GTEST_OS_WINDOWS
// Predicate-formatters for implementing the HRESULT checking macros
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
// We pass a long instead of HRESULT to avoid causing an
// include dependency for the HRESULT type.
GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
long hr); // NOLINT
GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
long hr); // NOLINT
#endif // GTEST_OS_WINDOWS
// Types of SetUpTestSuite() and TearDownTestSuite() functions.
using SetUpTestSuiteFunc = void (*)();
using TearDownTestSuiteFunc = void (*)();
struct CodeLocation {
CodeLocation(const std::string& a_file, int a_line)
: file(a_file), line(a_line) {}
std::string file;
int line;
};
// Helper to identify which setup function for TestCase / TestSuite to call.
// Only one function is allowed, either TestCase or TestSute but not both.
// Utility functions to help SuiteApiResolver
using SetUpTearDownSuiteFuncType = void (*)();
inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
return a == def ? nullptr : a;
}
template <typename T>
// Note that SuiteApiResolver inherits from T because
// SetUpTestSuite()/TearDownTestSuite() could be protected. This way
// SuiteApiResolver can access them.
struct SuiteApiResolver : T {
// testing::Test is only forward declared at this point. So we make it a
// dependent class for the compiler to be OK with it.
using Test =
typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
int line_num) {
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
SetUpTearDownSuiteFuncType test_case_fp =
GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
SetUpTearDownSuiteFuncType test_suite_fp =
GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
GTEST_CHECK_(!test_case_fp || !test_suite_fp)
<< "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
"make sure there is only one present at "
<< filename << ":" << line_num;
return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
#else
(void)(filename);
(void)(line_num);
return &T::SetUpTestSuite;
#endif
}
static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
int line_num) {
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
SetUpTearDownSuiteFuncType test_case_fp =
GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
SetUpTearDownSuiteFuncType test_suite_fp =
GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
GTEST_CHECK_(!test_case_fp || !test_suite_fp)
<< "Test can not provide both TearDownTestSuite and TearDownTestCase,"
" please make sure there is only one present at"
<< filename << ":" << line_num;
return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
#else
(void)(filename);
(void)(line_num);
return &T::TearDownTestSuite;
#endif
}
};
// Creates a new TestInfo object and registers it with Google Test;
// returns the created object.
//
// Arguments:
//
// test_suite_name: name of the test suite
// name: name of the test
// type_param: the name of the test's type parameter, or NULL if
// this is not a typed or a type-parameterized test.
// value_param: text representation of the test's value parameter,
// or NULL if this is not a type-parameterized test.
// code_location: code location where the test is defined
// fixture_class_id: ID of the test fixture class
// set_up_tc: pointer to the function that sets up the test suite
// tear_down_tc: pointer to the function that tears down the test suite
// factory: pointer to the factory that creates a test object.
// The newly created TestInfo instance will assume
// ownership of the factory object.
GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
const char* test_suite_name, const char* name, const char* type_param,
const char* value_param, CodeLocation code_location,
TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
// If *pstr starts with the given prefix, modifies *pstr to be right
// past the prefix and returns true; otherwise leaves *pstr unchanged
// and returns false. None of pstr, *pstr, and prefix can be NULL.
GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
/* class A needs to have dll-interface to be used by clients of class B */)
// State of the definition of a type-parameterized test suite.
class GTEST_API_ TypedTestSuitePState {
public:
TypedTestSuitePState() : registered_(false) {}
// Adds the given test name to defined_test_names_ and return true
// if the test suite hasn't been registered; otherwise aborts the
// program.
bool AddTestName(const char* file, int line, const char* case_name,
const char* test_name) {
if (registered_) {
fprintf(stderr,
"%s Test %s must be defined before "
"REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
FormatFileLocation(file, line).c_str(), test_name, case_name);
fflush(stderr);
posix::Abort();
}
registered_tests_.insert(
::std::make_pair(test_name, CodeLocation(file, line)));
return true;
}
bool TestExists(const std::string& test_name) const {
return registered_tests_.count(test_name) > 0;
}
const CodeLocation& GetCodeLocation(const std::string& test_name) const {
RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
GTEST_CHECK_(it != registered_tests_.end());
return it->second;
}
// Verifies that registered_tests match the test names in
// defined_test_names_; returns registered_tests if successful, or
// aborts the program otherwise.
const char* VerifyRegisteredTestNames(const char* test_suite_name,
const char* file, int line,
const char* registered_tests);
private:
typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
bool registered_;
RegisteredTestsMap registered_tests_;
};
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
using TypedTestCasePState = TypedTestSuitePState;
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
// Skips to the first non-space char after the first comma in 'str';
// returns NULL if no comma is found in 'str'.
inline const char* SkipComma(const char* str) {
const char* comma = strchr(str, ',');
if (comma == nullptr) {
return nullptr;
}
while (IsSpace(*(++comma))) {
}
return comma;
}
// Returns the prefix of 'str' before the first comma in it; returns
// the entire string if it contains no comma.
inline std::string GetPrefixUntilComma(const char* str) {
const char* comma = strchr(str, ',');
return comma == nullptr ? str : std::string(str, comma);
}
// Splits a given string on a given delimiter, populating a given
// vector with the fields.
void SplitString(const ::std::string& str, char delimiter,
::std::vector<::std::string>* dest);
// The default argument to the template below for the case when the user does
// not provide a name generator.
struct DefaultNameGenerator {
template <typename T>
static std::string GetName(int i) {
return StreamableToString(i);
}
};
template <typename Provided = DefaultNameGenerator>
struct NameGeneratorSelector {
typedef Provided type;
};
template <typename NameGenerator>
void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
template <typename NameGenerator, typename Types>
void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
i + 1);
}
template <typename NameGenerator, typename Types>
std::vector<std::string> GenerateNames() {
std::vector<std::string> result;
GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
return result;
}
// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
// registers a list of type-parameterized tests with Google Test. The
// return value is insignificant - we just need to return something
// such that we can call this function in a namespace scope.
//
// Implementation note: The GTEST_TEMPLATE_ macro declares a template
// template parameter. It's defined in gtest-type-util.h.
template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
class TypeParameterizedTest {
public:
// 'index' is the index of the test in the type list 'Types'
// specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
// Types). Valid values for 'index' are [0, N - 1] where N is the
// length of Types.
static bool Register(const char* prefix, const CodeLocation& code_location,
const char* case_name, const char* test_names, int index,
const std::vector<std::string>& type_names =
GenerateNames<DefaultNameGenerator, Types>()) {
typedef typename Types::Head Type;
typedef Fixture<Type> FixtureClass;
typedef typename GTEST_BIND_(TestSel, Type) TestClass;
// First, registers the first type-parameterized test in the type
// list.
MakeAndRegisterTestInfo(
(std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
"/" + type_names[static_cast<size_t>(index)])
.c_str(),
StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
GetTypeName<Type>().c_str(),
nullptr, // No value parameter.
code_location, GetTypeId<FixtureClass>(),
SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
code_location.file.c_str(), code_location.line),
SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
code_location.file.c_str(), code_location.line),
new TestFactoryImpl<TestClass>);
// Next, recurses (at compile time) with the tail of the type list.
return TypeParameterizedTest<Fixture, TestSel,
typename Types::Tail>::Register(prefix,
code_location,
case_name,
test_names,
index + 1,
type_names);
}
};
// The base case for the compile time recursion.
template <GTEST_TEMPLATE_ Fixture, class TestSel>
class TypeParameterizedTest<Fixture, TestSel, internal::None> {
public:
static bool Register(const char* /*prefix*/, const CodeLocation&,
const char* /*case_name*/, const char* /*test_names*/,
int /*index*/,
const std::vector<std::string>& =
std::vector<std::string>() /*type_names*/) {
return true;
}
};
GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
CodeLocation code_location);
GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
const char* case_name);
// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
// registers *all combinations* of 'Tests' and 'Types' with Google
// Test. The return value is insignificant - we just need to return
// something such that we can call this function in a namespace scope.
template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
class TypeParameterizedTestSuite {
public:
static bool Register(const char* prefix, CodeLocation code_location,
const TypedTestSuitePState* state, const char* case_name,
const char* test_names,
const std::vector<std::string>& type_names =
GenerateNames<DefaultNameGenerator, Types>()) {
RegisterTypeParameterizedTestSuiteInstantiation(case_name);
std::string test_name =
StripTrailingSpaces(GetPrefixUntilComma(test_names));
if (!state->TestExists(test_name)) {
fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
case_name, test_name.c_str(),
FormatFileLocation(code_location.file.c_str(), code_location.line)
.c_str());
fflush(stderr);
posix::Abort();
}
const CodeLocation& test_location = state->GetCodeLocation(test_name);
typedef typename Tests::Head Head;
// First, register the first test in 'Test' for each type in 'Types'.
TypeParameterizedTest<Fixture, Head, Types>::Register(
prefix, test_location, case_name, test_names, 0, type_names);
// Next, recurses (at compile time) with the tail of the test list.
return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
Types>::Register(prefix, code_location,
state, case_name,
SkipComma(test_names),
type_names);
}
};
// The base case for the compile time recursion.
template <GTEST_TEMPLATE_ Fixture, typename Types>
class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
public:
static bool Register(const char* /*prefix*/, const CodeLocation&,
const TypedTestSuitePState* /*state*/,
const char* /*case_name*/, const char* /*test_names*/,
const std::vector<std::string>& =
std::vector<std::string>() /*type_names*/) {
return true;
}
};
// Returns the current OS stack trace as an std::string.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
// Helpers for suppressing warnings on unreachable code or constant
// condition.
// Always returns true.
GTEST_API_ bool AlwaysTrue();
// Always returns false.
inline bool AlwaysFalse() { return !AlwaysTrue(); }
// Helper for suppressing false warning from Clang on a const char*
// variable declared in a conditional expression always being NULL in
// the else branch.
struct GTEST_API_ ConstCharPtr {
ConstCharPtr(const char* str) : value(str) {}
operator bool() const { return true; }
const char* value;
};
// Helper for declaring std::string within 'if' statement
// in pre C++17 build environment.
struct TrueWithString {
TrueWithString() = default;
explicit TrueWithString(const char* str) : value(str) {}
explicit TrueWithString(const std::string& str) : value(str) {}
explicit operator bool() const { return true; }
std::string value;
};
// A simple Linear Congruential Generator for generating random
// numbers with a uniform distribution. Unlike rand() and srand(), it
// doesn't use global state (and therefore can't interfere with user
// code). Unlike rand_r(), it's portable. An LCG isn't very random,
// but it's good enough for our purposes.
class GTEST_API_ Random {
public:
static const uint32_t kMaxRange = 1u << 31;
explicit Random(uint32_t seed) : state_(seed) {}
void Reseed(uint32_t seed) { state_ = seed; }
// Generates a random number from [0, range). Crashes if 'range' is
// 0 or greater than kMaxRange.
uint32_t Generate(uint32_t range);
private:
uint32_t state_;
Random(const Random&) = delete;
Random& operator=(const Random&) = delete;
};
// Turns const U&, U&, const U, and U all into U.
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
typename std::remove_const<typename std::remove_reference<T>::type>::type
// HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
// that's true if and only if T has methods DebugString() and ShortDebugString()
// that return std::string.
template <typename T>
class HasDebugStringAndShortDebugString {
private:
template <typename C>
static auto CheckDebugString(C*) -> typename std::is_same<
std::string, decltype(std::declval<const C>().DebugString())>::type;
template <typename>
static std::false_type CheckDebugString(...);
template <typename C>
static auto CheckShortDebugString(C*) -> typename std::is_same<
std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
template <typename>
static std::false_type CheckShortDebugString(...);
using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
public:
static constexpr bool value =
HasDebugStringType::value && HasShortDebugStringType::value;
};
template <typename T>
constexpr bool HasDebugStringAndShortDebugString<T>::value;
// When the compiler sees expression IsContainerTest<C>(0), if C is an
// STL-style container class, the first overload of IsContainerTest
// will be viable (since both C::iterator* and C::const_iterator* are
// valid types and NULL can be implicitly converted to them). It will
// be picked over the second overload as 'int' is a perfect match for
// the type of argument 0. If C::iterator or C::const_iterator is not
// a valid type, the first overload is not viable, and the second
// overload will be picked. Therefore, we can determine whether C is
// a container class by checking the type of IsContainerTest<C>(0).
// The value of the expression is insignificant.
//
// In C++11 mode we check the existence of a const_iterator and that an
// iterator is properly implemented for the container.
//
// For pre-C++11 that we look for both C::iterator and C::const_iterator.
// The reason is that C++ injects the name of a class as a member of the
// class itself (e.g. you can refer to class iterator as either
// 'iterator' or 'iterator::iterator'). If we look for C::iterator
// only, for example, we would mistakenly think that a class named
// iterator is an STL container.
//
// Also note that the simpler approach of overloading
// IsContainerTest(typename C::const_iterator*) and
// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
typedef int IsContainer;
template <class C,
class Iterator = decltype(::std::declval<const C&>().begin()),
class = decltype(::std::declval<const C&>().end()),
class = decltype(++::std::declval<Iterator&>()),
class = decltype(*::std::declval<Iterator>()),
class = typename C::const_iterator>
IsContainer IsContainerTest(int /* dummy */) {
return 0;
}
typedef char IsNotContainer;
template <class C>
IsNotContainer IsContainerTest(long /* dummy */) {
return '\0';
}
// Trait to detect whether a type T is a hash table.
// The heuristic used is that the type contains an inner type `hasher` and does
// not contain an inner type `reverse_iterator`.
// If the container is iterable in reverse, then order might actually matter.
template <typename T>
struct IsHashTable {
private:
template <typename U>
static char test(typename U::hasher*, typename U::reverse_iterator*);
template <typename U>
static int test(typename U::hasher*, ...);
template <typename U>
static char test(...);
public:
static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
};
template <typename T>
const bool IsHashTable<T>::value;
template <typename C,
bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
struct IsRecursiveContainerImpl;
template <typename C>
struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
// obey the same inconsistencies as the IsContainerTest, namely check if
// something is a container is relying on only const_iterator in C++11 and
// is relying on both const_iterator and iterator otherwise
template <typename C>
struct IsRecursiveContainerImpl<C, true> {
using value_type = decltype(*std::declval<typename C::const_iterator>());
using type =
std::is_same<typename std::remove_const<
typename std::remove_reference<value_type>::type>::type,
C>;
};
// IsRecursiveContainer<Type> is a unary compile-time predicate that
// evaluates whether C is a recursive container type. A recursive container
// type is a container type whose value_type is equal to the container type
// itself. An example for a recursive container type is
// boost::filesystem::path, whose iterator has a value_type that is equal to
// boost::filesystem::path.
template <typename C>
struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
// Utilities for native arrays.
// ArrayEq() compares two k-dimensional native arrays using the
// elements' operator==, where k can be any integer >= 0. When k is
// 0, ArrayEq() degenerates into comparing a single pair of values.
template <typename T, typename U>
bool ArrayEq(const T* lhs, size_t size, const U* rhs);
// This generic version is used when k is 0.
template <typename T, typename U>
inline bool ArrayEq(const T& lhs, const U& rhs) {
return lhs == rhs;
}
// This overload is used when k >= 1.
template <typename T, typename U, size_t N>
inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
return internal::ArrayEq(lhs, N, rhs);
}
// This helper reduces code bloat. If we instead put its logic inside
// the previous ArrayEq() function, arrays with different sizes would
// lead to different copies of the template code.
template <typename T, typename U>
bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
for (size_t i = 0; i != size; i++) {
if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
}
return true;
}
// Finds the first element in the iterator range [begin, end) that
// equals elem. Element may be a native array type itself.
template <typename Iter, typename Element>
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
for (Iter it = begin; it != end; ++it) {
if (internal::ArrayEq(*it, elem)) return it;
}
return end;
}
// CopyArray() copies a k-dimensional native array using the elements'
// operator=, where k can be any integer >= 0. When k is 0,
// CopyArray() degenerates into copying a single value.
template <typename T, typename U>
void CopyArray(const T* from, size_t size, U* to);
// This generic version is used when k is 0.
template <typename T, typename U>
inline void CopyArray(const T& from, U* to) {
*to = from;
}
// This overload is used when k >= 1.
template <typename T, typename U, size_t N>
inline void CopyArray(const T (&from)[N], U (*to)[N]) {
internal::CopyArray(from, N, *to);
}
// This helper reduces code bloat. If we instead put its logic inside
// the previous CopyArray() function, arrays with different sizes
// would lead to different copies of the template code.
template <typename T, typename U>
void CopyArray(const T* from, size_t size, U* to) {
for (size_t i = 0; i != size; i++) {
internal::CopyArray(from[i], to + i);
}
}
// The relation between an NativeArray object (see below) and the
// native array it represents.
// We use 2 different structs to allow non-copyable types to be used, as long
// as RelationToSourceReference() is passed.
struct RelationToSourceReference {};
struct RelationToSourceCopy {};
// Adapts a native array to a read-only STL-style container. Instead
// of the complete STL container concept, this adaptor only implements
// members useful for Google Mock's container matchers. New members
// should be added as needed. To simplify the implementation, we only
// support Element being a raw type (i.e. having no top-level const or
// reference modifier). It's the client's responsibility to satisfy
// this requirement. Element can be an array type itself (hence
// multi-dimensional arrays are supported).
template <typename Element>
class NativeArray {
public:
// STL-style container typedefs.
typedef Element value_type;
typedef Element* iterator;
typedef const Element* const_iterator;
// Constructs from a native array. References the source.
NativeArray(const Element* array, size_t count, RelationToSourceReference) {
InitRef(array, count);
}
// Constructs from a native array. Copies the source.
NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
InitCopy(array, count);
}
// Copy constructor.
NativeArray(const NativeArray& rhs) {
(this->*rhs.clone_)(rhs.array_, rhs.size_);
}
~NativeArray() {
if (clone_ != &NativeArray::InitRef) delete[] array_;
}
// STL-style container methods.
size_t size() const { return size_; }
const_iterator begin() const { return array_; }
const_iterator end() const { return array_ + size_; }
bool operator==(const NativeArray& rhs) const {
return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
}
private:
static_assert(!std::is_const<Element>::value, "Type must not be const");
static_assert(!std::is_reference<Element>::value,
"Type must not be a reference");
// Initializes this object with a copy of the input.
void InitCopy(const Element* array, size_t a_size) {
Element* const copy = new Element[a_size];
CopyArray(array, a_size, copy);
array_ = copy;
size_ = a_size;
clone_ = &NativeArray::InitCopy;
}
// Initializes this object with a reference of the input.
void InitRef(const Element* array, size_t a_size) {
array_ = array;
size_ = a_size;
clone_ = &NativeArray::InitRef;
}
const Element* array_;
size_t size_;
void (NativeArray::*clone_)(const Element*, size_t);
};
// Backport of std::index_sequence.
template <size_t... Is>
struct IndexSequence {
using type = IndexSequence;
};
// Double the IndexSequence, and one if plus_one is true.
template <bool plus_one, typename T, size_t sizeofT>
struct DoubleSequence;
template <size_t... I, size_t sizeofT>
struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
};
template <size_t... I, size_t sizeofT>
struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
using type = IndexSequence<I..., (sizeofT + I)...>;
};
// Backport of std::make_index_sequence.
// It uses O(ln(N)) instantiation depth.
template <size_t N>
struct MakeIndexSequenceImpl
: DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
N / 2>::type {};
template <>
struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
template <size_t N>
using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
template <typename... T>
using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
template <size_t>
struct Ignore {
Ignore(...); // NOLINT
};
template <typename>
struct ElemFromListImpl;
template <size_t... I>
struct ElemFromListImpl<IndexSequence<I...>> {
// We make Ignore a template to solve a problem with MSVC.
// A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
// MSVC doesn't understand how to deal with that pack expansion.
// Use `0 * I` to have a single instantiation of Ignore.
template <typename R>
static R Apply(Ignore<0 * I>..., R (*)(), ...);
};
template <size_t N, typename... T>
struct ElemFromList {
using type =
decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
static_cast<T (*)()>(nullptr)...));
};
struct FlatTupleConstructTag {};
template <typename... T>
class FlatTuple;
template <typename Derived, size_t I>
struct FlatTupleElemBase;
template <typename... T, size_t I>
struct FlatTupleElemBase<FlatTuple<T...>, I> {
using value_type = typename ElemFromList<I, T...>::type;
FlatTupleElemBase() = default;
template <typename Arg>
explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
: value(std::forward<Arg>(t)) {}
value_type value;
};
template <typename Derived, typename Idx>
struct FlatTupleBase;
template <size_t... Idx, typename... T>
struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
: FlatTupleElemBase<FlatTuple<T...>, Idx>... {
using Indices = IndexSequence<Idx...>;
FlatTupleBase() = default;
template <typename... Args>
explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
: FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
std::forward<Args>(args))... {}
template <size_t I>
const typename ElemFromList<I, T...>::type& Get() const {
return FlatTupleElemBase<FlatTuple<T...>, I>::value;
}
template <size_t I>
typename ElemFromList<I, T...>::type& Get() {
return FlatTupleElemBase<FlatTuple<T...>, I>::value;
}
template <typename F>
auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
return std::forward<F>(f)(Get<Idx>()...);
}
template <typename F>
auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
return std::forward<F>(f)(Get<Idx>()...);
}
};
// Analog to std::tuple but with different tradeoffs.
// This class minimizes the template instantiation depth, thus allowing more
// elements than std::tuple would. std::tuple has been seen to require an
// instantiation depth of more than 10x the number of elements in some
// implementations.
// FlatTuple and ElemFromList are not recursive and have a fixed depth
// regardless of T...
// MakeIndexSequence, on the other hand, it is recursive but with an
// instantiation depth of O(ln(N)).
template <typename... T>
class FlatTuple
: private FlatTupleBase<FlatTuple<T...>,
typename MakeIndexSequence<sizeof...(T)>::type> {
using Indices = typename FlatTupleBase<
FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
public:
FlatTuple() = default;
template <typename... Args>
explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
: FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
using FlatTuple::FlatTupleBase::Apply;
using FlatTuple::FlatTupleBase::Get;
};
// Utility functions to be called with static_assert to induce deprecation
// warnings.
GTEST_INTERNAL_DEPRECATED(
"INSTANTIATE_TEST_CASE_P is deprecated, please use "
"INSTANTIATE_TEST_SUITE_P")
constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
GTEST_INTERNAL_DEPRECATED(
"TYPED_TEST_CASE_P is deprecated, please use "
"TYPED_TEST_SUITE_P")
constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
GTEST_INTERNAL_DEPRECATED(
"TYPED_TEST_CASE is deprecated, please use "
"TYPED_TEST_SUITE")
constexpr bool TypedTestCaseIsDeprecated() { return true; }
GTEST_INTERNAL_DEPRECATED(
"REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
"REGISTER_TYPED_TEST_SUITE_P")
constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
GTEST_INTERNAL_DEPRECATED(
"INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
"INSTANTIATE_TYPED_TEST_SUITE_P")
constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
} // namespace internal
} // namespace testing
namespace std {
// Some standard library implementations use `struct tuple_size` and some use
// `class tuple_size`. Clang warns about the mismatch.
// https://reviews.llvm.org/D55466
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmismatched-tags"
#endif
template <typename... Ts>
struct tuple_size<testing::internal::FlatTuple<Ts...>>
: std::integral_constant<size_t, sizeof...(Ts)> {};
#ifdef __clang__
#pragma clang diagnostic pop
#endif
} // namespace std
#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
::testing::internal::AssertHelper(result_type, file, line, message) = \
::testing::Message()
#define GTEST_MESSAGE_(message, result_type) \
GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
#define GTEST_FATAL_FAILURE_(message) \
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
#define GTEST_NONFATAL_FAILURE_(message) \
GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
#define GTEST_SUCCESS_(message) \
GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
#define GTEST_SKIP_(message) \
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
// Suppress MSVC warning 4072 (unreachable code) for the code following
// statement if it returns or throws (or doesn't return or throw in some
// situations).
// NOTE: The "else" is important to keep this expansion to prevent a top-level
// "else" from attaching to our "if".
#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
if (::testing::internal::AlwaysTrue()) { \
statement; \
} else /* NOLINT */ \
static_assert(true, "") // User must have a semicolon after expansion.
#if GTEST_HAS_EXCEPTIONS
namespace testing {
namespace internal {
class NeverThrown {
public:
const char* what() const noexcept {
return "this exception should never be thrown";
}
};
} // namespace internal
} // namespace testing
#if GTEST_HAS_RTTI
#define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
#else // GTEST_HAS_RTTI
#define GTEST_EXCEPTION_TYPE_(e) \
std::string { "an std::exception-derived error" }
#endif // GTEST_HAS_RTTI
#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
catch (typename std::conditional< \
std::is_same<typename std::remove_cv<typename std::remove_reference< \
expected_exception>::type>::type, \
std::exception>::value, \
const ::testing::internal::NeverThrown&, const std::exception&>::type \
e) { \
gtest_msg.value = "Expected: " #statement \
" throws an exception of type " #expected_exception \
".\n Actual: it throws "; \
gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
gtest_msg.value += " with description \""; \
gtest_msg.value += e.what(); \
gtest_msg.value += "\"."; \
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
}
#else // GTEST_HAS_EXCEPTIONS
#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
#endif // GTEST_HAS_EXCEPTIONS
#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::TrueWithString gtest_msg{}) { \
bool gtest_caught_expected = false; \
try { \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
} catch (expected_exception const&) { \
gtest_caught_expected = true; \
} \
GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
catch (...) { \
gtest_msg.value = "Expected: " #statement \
" throws an exception of type " #expected_exception \
".\n Actual: it throws a different type."; \
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
} \
if (!gtest_caught_expected) { \
gtest_msg.value = "Expected: " #statement \
" throws an exception of type " #expected_exception \
".\n Actual: it throws nothing."; \
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
} \
} else /*NOLINT*/ \
GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \
: fail(gtest_msg.value.c_str())
#if GTEST_HAS_EXCEPTIONS
#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
catch (std::exception const& e) { \
gtest_msg.value = "it throws "; \
gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
gtest_msg.value += " with description \""; \
gtest_msg.value += e.what(); \
gtest_msg.value += "\"."; \
goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
}
#else // GTEST_HAS_EXCEPTIONS
#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
#endif // GTEST_HAS_EXCEPTIONS
#define GTEST_TEST_NO_THROW_(statement, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::TrueWithString gtest_msg{}) { \
try { \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
} \
GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
catch (...) { \
gtest_msg.value = "it throws."; \
goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
} \
} else \
GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \
: fail(("Expected: " #statement " doesn't throw an exception.\n" \
" Actual: " + \
gtest_msg.value) \
.c_str())
#define GTEST_TEST_ANY_THROW_(statement, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::AlwaysTrue()) { \
bool gtest_caught_any = false; \
try { \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
} catch (...) { \
gtest_caught_any = true; \
} \
if (!gtest_caught_any) { \
goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
} \
} else \
GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \
: fail("Expected: " #statement \
" throws an exception.\n" \
" Actual: it doesn't.")
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
// either a boolean expression or an AssertionResult. text is a textual
// representation of expression as it was passed into the EXPECT_TRUE.
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (const ::testing::AssertionResult gtest_ar_ = \
::testing::AssertionResult(expression)) \
; \
else \
fail(::testing::internal::GetBoolAssertionFailureMessage( \
gtest_ar_, text, #actual, #expected) \
.c_str())
#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
if (::testing::internal::AlwaysTrue()) { \
::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
} \
} else \
GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \
: fail("Expected: " #statement \
" doesn't generate new fatal " \
"failures in the current thread.\n" \
" Actual: it does.")
// Expands to the name of the class that implements the given test.
#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
test_suite_name##_##test_name##_Test
// Helper macro for defining tests.
#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
"test_suite_name must not be empty"); \
static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
"test_name must not be empty"); \
class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
: public parent_class { \
public: \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
(const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
const GTEST_TEST_CLASS_NAME_(test_suite_name, \
test_name) &) = delete; /* NOLINT */ \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
(GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
GTEST_TEST_CLASS_NAME_(test_suite_name, \
test_name) &&) noexcept = delete; /* NOLINT */ \
\
private: \
void TestBody() override; \
static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
}; \
\
::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
test_name)::test_info_ = \
::testing::internal::MakeAndRegisterTestInfo( \
#test_suite_name, #test_name, nullptr, nullptr, \
::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
::testing::internal::SuiteApiResolver< \
parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
::testing::internal::SuiteApiResolver< \
parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
test_suite_name, test_name)>); \
void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
#endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_