#include "StarRenderer_opengl20.hpp" #include "StarJsonExtra.hpp" #include "StarCasting.hpp" #include "StarLogging.hpp" namespace Star { size_t const MultiTextureCount = 4; char const* DefaultVertexShader = R"SHADER( #version 110 uniform vec2 textureSize0; uniform vec2 textureSize1; uniform vec2 textureSize2; uniform vec2 textureSize3; uniform vec2 screenSize; uniform mat3 vertexTransform; attribute vec2 vertexPosition; attribute vec2 vertexTextureCoordinate; attribute float vertexTextureIndex; attribute vec4 vertexColor; attribute float vertexParam1; varying vec2 fragmentTextureCoordinate; varying float fragmentTextureIndex; varying vec4 fragmentColor; void main() { vec2 screenPosition = (vertexTransform * vec3(vertexPosition, 1.0)).xy; gl_Position = vec4(screenPosition / screenSize * 2.0 - 1.0, 0.0, 1.0); if (vertexTextureIndex > 2.9) { fragmentTextureCoordinate = vertexTextureCoordinate / textureSize3; } else if (vertexTextureIndex > 1.9) { fragmentTextureCoordinate = vertexTextureCoordinate / textureSize2; } else if (vertexTextureIndex > 0.9) { fragmentTextureCoordinate = vertexTextureCoordinate / textureSize1; } else { fragmentTextureCoordinate = vertexTextureCoordinate / textureSize0; } fragmentTextureIndex = vertexTextureIndex; fragmentColor = vertexColor; } )SHADER"; char const* DefaultFragmentShader = R"SHADER( #version 110 uniform sampler2D texture0; uniform sampler2D texture1; uniform sampler2D texture2; uniform sampler2D texture3; varying vec2 fragmentTextureCoordinate; varying float fragmentTextureIndex; varying vec4 fragmentColor; void main() { if (fragmentTextureIndex > 2.9) { gl_FragColor = texture2D(texture3, fragmentTextureCoordinate) * fragmentColor; } else if (fragmentTextureIndex > 1.9) { gl_FragColor = texture2D(texture2, fragmentTextureCoordinate) * fragmentColor; } else if (fragmentTextureIndex > 0.9) { gl_FragColor = texture2D(texture1, fragmentTextureCoordinate) * fragmentColor; } else { gl_FragColor = texture2D(texture0, fragmentTextureCoordinate) * fragmentColor; } } )SHADER"; OpenGl20Renderer::OpenGl20Renderer() { if (glewInit() != GLEW_OK) throw RendererException("Could not initialize GLEW"); if (!GLEW_VERSION_2_0) throw RendererException("OpenGL 2.0 not available!"); Logger::info("OpenGL version: '{}' vendor: '{}' renderer: '{}' shader: '{}'", (const char*)glGetString(GL_VERSION), (const char*)glGetString(GL_VENDOR), (const char*)glGetString(GL_RENDERER), (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION)); glClearColor(0.0, 0.0, 0.0, 1.0); glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_DEPTH_TEST); m_whiteTexture = createGlTexture(Image::filled({1, 1}, Vec4B(255, 255, 255, 255), PixelFormat::RGBA32), TextureAddressing::Clamp, TextureFiltering::Nearest); m_immediateRenderBuffer = createGlRenderBuffer(); loadEffectConfig("internal", JsonObject(), {{"vertex", DefaultVertexShader}, {"fragment", DefaultFragmentShader}}); m_limitTextureGroupSize = false; m_useMultiTexturing = true; logGlErrorSummary("OpenGL errors during renderer initialization"); } OpenGl20Renderer::~OpenGl20Renderer() { for (auto& effect : m_effects) glDeleteProgram(effect.second.program); logGlErrorSummary("OpenGL errors during shutdown"); } String OpenGl20Renderer::rendererId() const { return "OpenGL20"; } Vec2U OpenGl20Renderer::screenSize() const { return m_screenSize; } void OpenGl20Renderer::loadEffectConfig(String const& name, Json const& effectConfig, StringMap const& shaders) { if (m_effects.contains(name)) { Logger::warn("OpenGL effect {} already exists", name); switchEffectConfig(name); return; } GLint status = 0; char logBuffer[1024]; auto compileShader = [&](GLenum type, String const& name) -> GLuint { GLuint shader = glCreateShader(type); auto* source = shaders.ptr(name); if (!source) return 0; char const* sourcePtr = source->utf8Ptr(); glShaderSource(shader, 1, &sourcePtr, NULL); glCompileShader(shader); glGetShaderiv(shader, GL_COMPILE_STATUS, &status); if (!status) { glGetShaderInfoLog(shader, sizeof(logBuffer), NULL, logBuffer); throw RendererException(strf("Failed to compile {} shader: {}\n", name, logBuffer)); } return shader; }; GLuint vertexShader = compileShader(GL_VERTEX_SHADER, "vertex"); GLuint fragmentShader = compileShader(GL_FRAGMENT_SHADER, "fragment"); GLuint program = glCreateProgram(); if (vertexShader) glAttachShader(program, vertexShader); if (fragmentShader) glAttachShader(program, fragmentShader); glLinkProgram(program); if (vertexShader) glDeleteShader(vertexShader); if (fragmentShader) glDeleteShader(fragmentShader); glGetProgramiv(program, GL_LINK_STATUS, &status); if (!status) { glGetProgramInfoLog(program, sizeof(logBuffer), NULL, logBuffer); glDeleteProgram(program); throw RendererException(strf("Failed to link program: {}\n", logBuffer)); } glUseProgram(m_program = program); setupGlUniforms(m_program); auto& effect = m_effects.emplace(name, Effect{ program, effectConfig, {}, {} }).first->second; m_currentEffect = &effect; for (auto const& p : effectConfig.getObject("effectParameters", {})) { EffectParameter effectParameter; effectParameter.parameterUniform = glGetUniformLocation(m_program, p.second.getString("uniform").utf8Ptr()); if (effectParameter.parameterUniform == -1) { Logger::warn("OpenGL20 effect parameter '{}' has no associated uniform, skipping", p.first); } else { String type = p.second.getString("type"); if (type == "bool") { effectParameter.parameterType = RenderEffectParameter::typeIndexOf(); } else if (type == "int") { effectParameter.parameterType = RenderEffectParameter::typeIndexOf(); } else if (type == "float") { effectParameter.parameterType = RenderEffectParameter::typeIndexOf(); } else if (type == "vec2") { effectParameter.parameterType = RenderEffectParameter::typeIndexOf(); } else if (type == "vec3") { effectParameter.parameterType = RenderEffectParameter::typeIndexOf(); } else if (type == "vec4") { effectParameter.parameterType = RenderEffectParameter::typeIndexOf(); } else { throw RendererException::format("Unrecognized effect parameter type '{}'", type); } effect.parameters[p.first] = effectParameter; if (Json def = p.second.get("default", {})) { if (type == "bool") { setEffectParameter(p.first, def.toBool()); } else if (type == "int") { setEffectParameter(p.first, (int)def.toInt()); } else if (type == "float") { setEffectParameter(p.first, def.toFloat()); } else if (type == "vec2") { setEffectParameter(p.first, jsonToVec2F(def)); } else if (type == "vec3") { setEffectParameter(p.first, jsonToVec3F(def)); } else if (type == "vec4") { setEffectParameter(p.first, jsonToVec4F(def)); } } } } // Assign each texture parameter a texture unit starting with MultiTextureCount, the first // few texture units are used by the primary textures being drawn. Currently, // maximum texture units are not checked. unsigned parameterTextureUnit = MultiTextureCount; for (auto const& p : effectConfig.getObject("effectTextures", {})) { EffectTexture effectTexture; effectTexture.textureUniform = glGetUniformLocation(m_program, p.second.getString("textureUniform").utf8Ptr()); if (effectTexture.textureUniform == -1) { Logger::warn("OpenGL20 effect parameter '{}' has no associated uniform, skipping", p.first); } else { effectTexture.textureUnit = parameterTextureUnit++; glUniform1i(effectTexture.textureUniform, effectTexture.textureUnit); effectTexture.textureAddressing = TextureAddressingNames.getLeft(p.second.getString("textureAddressing", "clamp")); effectTexture.textureFiltering = TextureFilteringNames.getLeft(p.second.getString("textureFiltering", "nearest")); if (auto tsu = p.second.optString("textureSizeUniform")) { effectTexture.textureSizeUniform = glGetUniformLocation(m_program, tsu->utf8Ptr()); if (effectTexture.textureSizeUniform == -1) Logger::warn("OpenGL20 effect parameter '{}' has textureSizeUniform '{}' with no associated uniform", p.first, *tsu); } effect.textures[p.first] = effectTexture; } } if (DebugEnabled) logGlErrorSummary("OpenGL errors setting effect config"); } void OpenGl20Renderer::setEffectParameter(String const& parameterName, RenderEffectParameter const& value) { auto ptr = m_currentEffect->parameters.ptr(parameterName); if (!ptr || (ptr->parameterValue && *ptr->parameterValue == value)) return; if (ptr->parameterType != value.typeIndex()) throw RendererException::format("OpenGL20Renderer::setEffectParameter '{}' parameter type mismatch", parameterName); flushImmediatePrimitives(); if (auto v = value.ptr()) glUniform1i(ptr->parameterUniform, *v); else if (auto v = value.ptr()) glUniform1i(ptr->parameterUniform, *v); else if (auto v = value.ptr()) glUniform1f(ptr->parameterUniform, *v); else if (auto v = value.ptr()) glUniform2f(ptr->parameterUniform, (*v)[0], (*v)[1]); else if (auto v = value.ptr()) glUniform3f(ptr->parameterUniform, (*v)[0], (*v)[1], (*v)[2]); else if (auto v = value.ptr()) glUniform4f(ptr->parameterUniform, (*v)[0], (*v)[1], (*v)[2], (*v)[3]); ptr->parameterValue = value; } void OpenGl20Renderer::setEffectTexture(String const& textureName, Image const& image) { auto ptr = m_currentEffect->textures.ptr(textureName); if (!ptr) return; flushImmediatePrimitives(); if (!ptr->textureValue || ptr->textureValue->textureId == 0) { ptr->textureValue = createGlTexture(image, ptr->textureAddressing, ptr->textureFiltering); } else { glBindTexture(GL_TEXTURE_2D, ptr->textureValue->textureId); ptr->textureValue->textureSize = image.size(); uploadTextureImage(image.pixelFormat(), image.size(), image.data()); } if (ptr->textureSizeUniform != -1) { auto textureSize = ptr->textureValue->glTextureSize(); glUniform2f(ptr->textureSizeUniform, textureSize[0], textureSize[1]); } } bool OpenGl20Renderer::switchEffectConfig(String const& name) { flushImmediatePrimitives(); auto find = m_effects.find(name); if (find == m_effects.end()) return false; Effect& effect = find->second; glUseProgram(m_program = effect.program); setupGlUniforms(m_program); m_currentEffect = &effect; return true; } void OpenGl20Renderer::setScissorRect(Maybe const& scissorRect) { if (scissorRect == m_scissorRect) return; flushImmediatePrimitives(); m_scissorRect = scissorRect; if (m_scissorRect) { glEnable(GL_SCISSOR_TEST); glScissor(m_scissorRect->xMin(), m_scissorRect->yMin(), m_scissorRect->width(), m_scissorRect->height()); } else { glDisable(GL_SCISSOR_TEST); } } TexturePtr OpenGl20Renderer::createTexture(Image const& texture, TextureAddressing addressing, TextureFiltering filtering) { return createGlTexture(texture, addressing, filtering); } void OpenGl20Renderer::setSizeLimitEnabled(bool enabled) { m_limitTextureGroupSize = enabled; } void OpenGl20Renderer::setMultiTexturingEnabled(bool enabled) { m_useMultiTexturing = enabled; } TextureGroupPtr OpenGl20Renderer::createTextureGroup(TextureGroupSize textureSize, TextureFiltering filtering) { int maxTextureSize; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize); // Large texture sizes are not always supported if (textureSize == TextureGroupSize::Large && (m_limitTextureGroupSize || maxTextureSize < 4096)) textureSize = TextureGroupSize::Medium; unsigned atlasNumCells; if (textureSize == TextureGroupSize::Large) atlasNumCells = 256; else if (textureSize == TextureGroupSize::Medium) atlasNumCells = 128; else // TextureGroupSize::Small atlasNumCells = 64; Logger::info("detected supported OpenGL texture size {}, using atlasNumCells {}", maxTextureSize, atlasNumCells); auto glTextureGroup = make_shared(atlasNumCells); glTextureGroup->textureAtlasSet.textureFiltering = filtering; m_liveTextureGroups.append(glTextureGroup); return glTextureGroup; } RenderBufferPtr OpenGl20Renderer::createRenderBuffer() { return createGlRenderBuffer(); } List& OpenGl20Renderer::immediatePrimitives() { return m_immediatePrimitives; } void OpenGl20Renderer::render(RenderPrimitive primitive) { m_immediatePrimitives.append(move(primitive)); } void OpenGl20Renderer::renderBuffer(RenderBufferPtr const& renderBuffer, Mat3F const& transformation) { flushImmediatePrimitives(); renderGlBuffer(*convert(renderBuffer.get()), transformation); } void OpenGl20Renderer::flush() { flushImmediatePrimitives(); } void OpenGl20Renderer::setScreenSize(Vec2U screenSize) { m_screenSize = screenSize; glViewport(0, 0, m_screenSize[0], m_screenSize[1]); glUniform2f(m_screenSizeUniform, m_screenSize[0], m_screenSize[1]); } void OpenGl20Renderer::startFrame() { if (m_scissorRect) glDisable(GL_SCISSOR_TEST); glClear(GL_COLOR_BUFFER_BIT); if (m_scissorRect) glEnable(GL_SCISSOR_TEST); } void OpenGl20Renderer::finishFrame() { flushImmediatePrimitives(); // Make sure that the immediate render buffer doesn't needlessly lock texutres // from being compressed. List empty; m_immediateRenderBuffer->set(empty); filter(m_liveTextureGroups, [](auto const& p) { unsigned const CompressionsPerFrame = 1; if (!p.unique() || p->textureAtlasSet.totalTextures() > 0) { p->textureAtlasSet.compressionPass(CompressionsPerFrame); return true; } return false; }); if (DebugEnabled) logGlErrorSummary("OpenGL errors this frame"); } OpenGl20Renderer::GlTextureAtlasSet::GlTextureAtlasSet(unsigned atlasNumCells) : TextureAtlasSet(16, atlasNumCells) {} GLuint OpenGl20Renderer::GlTextureAtlasSet::createAtlasTexture(Vec2U const& size, PixelFormat pixelFormat) { GLuint glTextureId; glGenTextures(1, &glTextureId); if (glTextureId == 0) throw RendererException("Could not generate texture in OpenGL20Renderer::TextureGroup::createAtlasTexture()"); glBindTexture(GL_TEXTURE_2D, glTextureId); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (textureFiltering == TextureFiltering::Nearest) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } else { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } uploadTextureImage(pixelFormat, size, nullptr); return glTextureId; } void OpenGl20Renderer::GlTextureAtlasSet::destroyAtlasTexture(GLuint const& glTexture) { glDeleteTextures(1, &glTexture); } void OpenGl20Renderer::GlTextureAtlasSet::copyAtlasPixels( GLuint const& glTexture, Vec2U const& bottomLeft, Image const& image) { glBindTexture(GL_TEXTURE_2D, glTexture); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); if (image.pixelFormat() == PixelFormat::RGB24) { glTexSubImage2D(GL_TEXTURE_2D, 0, bottomLeft[0], bottomLeft[1], image.width(), image.height(), GL_RGB, GL_UNSIGNED_BYTE, image.data()); } else if (image.pixelFormat() == PixelFormat::RGBA32) { glTexSubImage2D(GL_TEXTURE_2D, 0, bottomLeft[0], bottomLeft[1], image.width(), image.height(), GL_RGBA, GL_UNSIGNED_BYTE, image.data()); } else if (image.pixelFormat() == PixelFormat::BGR24) { glTexSubImage2D(GL_TEXTURE_2D, 0, bottomLeft[0], bottomLeft[1], image.width(), image.height(), GL_BGR, GL_UNSIGNED_BYTE, image.data()); } else if (image.pixelFormat() == PixelFormat::BGRA32) { glTexSubImage2D(GL_TEXTURE_2D, 0, bottomLeft[0], bottomLeft[1], image.width(), image.height(), GL_BGRA, GL_UNSIGNED_BYTE, image.data()); } else { throw RendererException("Unsupported texture format in OpenGL20Renderer::TextureGroup::copyAtlasPixels"); } } OpenGl20Renderer::GlTextureGroup::GlTextureGroup(unsigned atlasNumCells) : textureAtlasSet(atlasNumCells) {} OpenGl20Renderer::GlTextureGroup::~GlTextureGroup() { textureAtlasSet.reset(); } TextureFiltering OpenGl20Renderer::GlTextureGroup::filtering() const { return textureAtlasSet.textureFiltering; } TexturePtr OpenGl20Renderer::GlTextureGroup::create(Image const& texture) { // If the image is empty, or would not fit in the texture atlas with border // pixels, just create a regular texture Vec2U atlasTextureSize = textureAtlasSet.atlasTextureSize(); if (texture.empty() || texture.width() + 2 > atlasTextureSize[0] || texture.height() + 2 > atlasTextureSize[1]) return createGlTexture(texture, TextureAddressing::Clamp, textureAtlasSet.textureFiltering); auto glGroupedTexture = make_ref(); glGroupedTexture->parentGroup = shared_from_this(); glGroupedTexture->parentAtlasTexture = textureAtlasSet.addTexture(texture); return glGroupedTexture; } OpenGl20Renderer::GlGroupedTexture::~GlGroupedTexture() { if (parentAtlasTexture) parentGroup->textureAtlasSet.freeTexture(parentAtlasTexture); } Vec2U OpenGl20Renderer::GlGroupedTexture::size() const { return parentAtlasTexture->imageSize(); } TextureFiltering OpenGl20Renderer::GlGroupedTexture::filtering() const { return parentGroup->filtering(); } TextureAddressing OpenGl20Renderer::GlGroupedTexture::addressing() const { return TextureAddressing::Clamp; } GLuint OpenGl20Renderer::GlGroupedTexture::glTextureId() const { return parentAtlasTexture->atlasTexture(); } Vec2U OpenGl20Renderer::GlGroupedTexture::glTextureSize() const { return parentGroup->textureAtlasSet.atlasTextureSize(); } Vec2U OpenGl20Renderer::GlGroupedTexture::glTextureCoordinateOffset() const { return parentAtlasTexture->atlasTextureCoordinates().min(); } void OpenGl20Renderer::GlGroupedTexture::incrementBufferUseCount() { if (bufferUseCount == 0) parentAtlasTexture->setLocked(true); ++bufferUseCount; } void OpenGl20Renderer::GlGroupedTexture::decrementBufferUseCount() { starAssert(bufferUseCount != 0); if (bufferUseCount == 1) parentAtlasTexture->setLocked(false); --bufferUseCount; } OpenGl20Renderer::GlLoneTexture::~GlLoneTexture() { if (textureId != 0) glDeleteTextures(1, &textureId); } Vec2U OpenGl20Renderer::GlLoneTexture::size() const { return textureSize; } TextureFiltering OpenGl20Renderer::GlLoneTexture::filtering() const { return textureFiltering; } TextureAddressing OpenGl20Renderer::GlLoneTexture::addressing() const { return textureAddressing; } GLuint OpenGl20Renderer::GlLoneTexture::glTextureId() const { return textureId; } Vec2U OpenGl20Renderer::GlLoneTexture::glTextureSize() const { return textureSize; } Vec2U OpenGl20Renderer::GlLoneTexture::glTextureCoordinateOffset() const { return Vec2U(); } OpenGl20Renderer::GlRenderBuffer::~GlRenderBuffer() { for (auto const& texture : usedTextures) { if (auto gt = as(texture.get())) gt->decrementBufferUseCount(); } for (auto const& vb : vertexBuffers) glDeleteBuffers(1, &vb.vertexBuffer); } void OpenGl20Renderer::GlRenderBuffer::set(List& primitives) { for (auto const& texture : usedTextures) { if (auto gt = as(texture.get())) gt->decrementBufferUseCount(); } usedTextures.clear(); auto oldVertexBuffers = take(vertexBuffers); List currentTextures; List currentTextureSizes; size_t currentVertexCount = 0; auto finishCurrentBuffer = [&]() { if (currentVertexCount > 0) { GlVertexBuffer vb; for (size_t i = 0; i < currentTextures.size(); ++i) { vb.textures.append(GlVertexBufferTexture{currentTextures[i], currentTextureSizes[i]}); } vb.vertexCount = currentVertexCount; if (!oldVertexBuffers.empty()) { auto oldVb = oldVertexBuffers.takeLast(); vb.vertexBuffer = oldVb.vertexBuffer; glBindBuffer(GL_ARRAY_BUFFER, vb.vertexBuffer); if (oldVb.vertexCount >= vb.vertexCount) glBufferSubData(GL_ARRAY_BUFFER, 0, accumulationBuffer.size(), accumulationBuffer.ptr()); else glBufferData(GL_ARRAY_BUFFER, accumulationBuffer.size(), accumulationBuffer.ptr(), GL_STREAM_DRAW); } else { glGenBuffers(1, &vb.vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, vb.vertexBuffer); glBufferData(GL_ARRAY_BUFFER, accumulationBuffer.size(), accumulationBuffer.ptr(), GL_STREAM_DRAW); } vertexBuffers.append(vb); currentTextures.clear(); currentTextureSizes.clear(); accumulationBuffer.clear(); currentVertexCount = 0; } }; auto textureCount = useMultiTexturing ? MultiTextureCount : 1; auto addCurrentTexture = [&](TexturePtr texture) -> pair { if (!texture) texture = whiteTexture; auto glTexture = as(texture.get()); GLuint glTextureId = glTexture->glTextureId(); auto textureIndex = currentTextures.indexOf(glTextureId); if (textureIndex == NPos) { if (currentTextures.size() >= textureCount) finishCurrentBuffer(); textureIndex = currentTextures.size(); currentTextures.append(glTextureId); currentTextureSizes.append(glTexture->glTextureSize()); } if (auto gt = as(texture.get())) gt->incrementBufferUseCount(); usedTextures.add(move(texture)); return {float(textureIndex), Vec2F(glTexture->glTextureCoordinateOffset())}; }; auto appendBufferVertex = [&](RenderVertex const& v, float textureIndex, Vec2F textureCoordinateOffset) { GlRenderVertex glv { v.screenCoordinate, v.textureCoordinate + textureCoordinateOffset, textureIndex, v.color, v.param1 }; accumulationBuffer.append((char const*)&glv, sizeof(GlRenderVertex)); ++currentVertexCount; }; for (auto& primitive : primitives) { float textureIndex; Vec2F textureOffset; if (auto tri = primitive.ptr()) { tie(textureIndex, textureOffset) = addCurrentTexture(move(tri->texture)); appendBufferVertex(tri->a, textureIndex, textureOffset); appendBufferVertex(tri->b, textureIndex, textureOffset); appendBufferVertex(tri->c, textureIndex, textureOffset); } else if (auto quad = primitive.ptr()) { tie(textureIndex, textureOffset) = addCurrentTexture(move(quad->texture)); appendBufferVertex(quad->a, textureIndex, textureOffset); appendBufferVertex(quad->b, textureIndex, textureOffset); appendBufferVertex(quad->c, textureIndex, textureOffset); appendBufferVertex(quad->a, textureIndex, textureOffset); appendBufferVertex(quad->c, textureIndex, textureOffset); appendBufferVertex(quad->d, textureIndex, textureOffset); } else if (auto poly = primitive.ptr()) { if (poly->vertexes.size() > 2) { tie(textureIndex, textureOffset) = addCurrentTexture(move(poly->texture)); for (size_t i = 1; i < poly->vertexes.size() - 1; ++i) { appendBufferVertex(poly->vertexes[0], textureIndex, textureOffset); appendBufferVertex(poly->vertexes[i], textureIndex, textureOffset); appendBufferVertex(poly->vertexes[i + 1], textureIndex, textureOffset); } } } } vertexBuffers.reserve(primitives.size() * 6); finishCurrentBuffer(); for (auto const& vb : oldVertexBuffers) glDeleteBuffers(1, &vb.vertexBuffer); } bool OpenGl20Renderer::logGlErrorSummary(String prefix) { if (GLenum error = glGetError()) { Logger::error("{}: ", prefix); do { if (error == GL_INVALID_ENUM) { Logger::error("GL_INVALID_ENUM"); } else if (error == GL_INVALID_VALUE) { Logger::error("GL_INVALID_VALUE"); } else if (error == GL_INVALID_OPERATION) { Logger::error("GL_INVALID_OPERATION"); } else if (error == GL_INVALID_FRAMEBUFFER_OPERATION) { Logger::error("GL_INVALID_FRAMEBUFFER_OPERATION"); } else if (error == GL_OUT_OF_MEMORY) { Logger::error("GL_OUT_OF_MEMORY"); } else if (error == GL_STACK_UNDERFLOW) { Logger::error("GL_STACK_UNDERFLOW"); } else if (error == GL_STACK_OVERFLOW) { Logger::error("GL_STACK_OVERFLOW"); } else { Logger::error(""); } } while (error = glGetError()); return true; } return false; } void OpenGl20Renderer::uploadTextureImage(PixelFormat pixelFormat, Vec2U size, uint8_t const* data) { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); if (pixelFormat == PixelFormat::RGB24) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size[0], size[1], 0, GL_RGB, GL_UNSIGNED_BYTE, data); } else if (pixelFormat == PixelFormat::RGBA32) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size[0], size[1], 0, GL_RGBA, GL_UNSIGNED_BYTE, data); } else if (pixelFormat == PixelFormat::BGR24) { glTexImage2D(GL_TEXTURE_2D, 0, GL_BGR, size[0], size[1], 0, GL_BGR, GL_UNSIGNED_BYTE, data); } else if (pixelFormat == PixelFormat::BGRA32) { glTexImage2D(GL_TEXTURE_2D, 0, GL_BGRA, size[0], size[1], 0, GL_RGBA, GL_UNSIGNED_BYTE, data); } else { starAssert(false); } } void OpenGl20Renderer::flushImmediatePrimitives() { if (m_immediatePrimitives.empty()) return; m_immediateRenderBuffer->set(m_immediatePrimitives); m_immediatePrimitives.resize(0); renderGlBuffer(*m_immediateRenderBuffer, Mat3F::identity()); } auto OpenGl20Renderer::createGlTexture(Image const& image, TextureAddressing addressing, TextureFiltering filtering) -> RefPtr { auto glLoneTexture = make_ref(); glLoneTexture->textureFiltering = filtering; glLoneTexture->textureAddressing = addressing; glLoneTexture->textureSize = image.size(); if (image.empty()) return glLoneTexture; glGenTextures(1, &glLoneTexture->textureId); if (glLoneTexture->textureId == 0) throw RendererException("Could not generate texture in OpenGL20Renderer::createGlTexture"); glBindTexture(GL_TEXTURE_2D, glLoneTexture->textureId); if (addressing == TextureAddressing::Clamp) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } if (filtering == TextureFiltering::Nearest) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } else { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } uploadTextureImage(image.pixelFormat(), image.size(), image.data()); return glLoneTexture; } auto OpenGl20Renderer::createGlRenderBuffer() -> shared_ptr { auto glrb = make_shared(); glrb->whiteTexture = m_whiteTexture; glrb->useMultiTexturing = m_useMultiTexturing; return glrb; } void OpenGl20Renderer::renderGlBuffer(GlRenderBuffer const& renderBuffer, Mat3F const& transformation) { for (auto const& vb : renderBuffer.vertexBuffers) { glUniformMatrix3fv(m_vertexTransformUniform, 1, GL_TRUE, transformation.ptr()); for (size_t i = 0; i < vb.textures.size(); ++i) { glUniform2f(m_textureSizeUniforms[i], vb.textures[i].size[0], vb.textures[i].size[1]); glActiveTexture(GL_TEXTURE0 + i); glBindTexture(GL_TEXTURE_2D, vb.textures[i].texture); } for (auto const& p : m_currentEffect->textures) { if (p.second.textureValue) { glActiveTexture(GL_TEXTURE0 + p.second.textureUnit); glBindTexture(GL_TEXTURE_2D, p.second.textureValue->textureId); } } glBindBuffer(GL_ARRAY_BUFFER, vb.vertexBuffer); glEnableVertexAttribArray(m_positionAttribute); glEnableVertexAttribArray(m_texCoordAttribute); glEnableVertexAttribArray(m_texIndexAttribute); glEnableVertexAttribArray(m_colorAttribute); glVertexAttribPointer(m_positionAttribute, 2, GL_FLOAT, GL_FALSE, sizeof(GlRenderVertex), (GLvoid*)offsetof(GlRenderVertex, screenCoordinate)); glVertexAttribPointer(m_texCoordAttribute, 2, GL_FLOAT, GL_FALSE, sizeof(GlRenderVertex), (GLvoid*)offsetof(GlRenderVertex, textureCoordinate)); glVertexAttribPointer(m_texIndexAttribute, 1, GL_FLOAT, GL_FALSE, sizeof(GlRenderVertex), (GLvoid*)offsetof(GlRenderVertex, textureIndex)); glVertexAttribPointer(m_colorAttribute, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(GlRenderVertex), (GLvoid*)offsetof(GlRenderVertex, color)); if (m_param1Attribute != -1) { glEnableVertexAttribArray(m_param1Attribute); glVertexAttribPointer(m_param1Attribute, 1, GL_FLOAT, GL_FALSE, sizeof(GlRenderVertex), (GLvoid*)offsetof(GlRenderVertex, param1)); } glDrawArrays(GL_TRIANGLES, 0, vb.vertexCount); } } void OpenGl20Renderer::setupGlUniforms(GLuint program) { m_positionAttribute = glGetAttribLocation(program, "vertexPosition"); m_texCoordAttribute = glGetAttribLocation(program, "vertexTextureCoordinate"); m_texIndexAttribute = glGetAttribLocation(program, "vertexTextureIndex"); m_colorAttribute = glGetAttribLocation(program, "vertexColor"); m_param1Attribute = glGetAttribLocation(program, "vertexParam1"); m_textureUniforms.clear(); m_textureSizeUniforms.clear(); for (size_t i = 0; i < MultiTextureCount; ++i) { m_textureUniforms.append(glGetUniformLocation(program, strf("texture{}", i).c_str())); m_textureSizeUniforms.append(glGetUniformLocation(program, strf("textureSize{}", i).c_str())); } m_screenSizeUniform = glGetUniformLocation(program, "screenSize"); m_vertexTransformUniform = glGetUniformLocation(program, "vertexTransform"); for (size_t i = 0; i < MultiTextureCount; ++i) glUniform1i(m_textureUniforms[i], i); glUniform2f(m_screenSizeUniform, m_screenSize[0], m_screenSize[1]); } }