// Formatting library for C++ - the core API for char/UTF-8 // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CORE_H_ #define FMT_CORE_H_ #include <cstddef> // std::byte #include <cstdio> // std::FILE #include <cstring> // std::strlen #include <iterator> #include <limits> #include <string> #include <type_traits> // The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 100000 #if defined(__clang__) && !defined(__ibmxl__) # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && \ !defined(__NVCOMPILER) # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #else # define FMT_GCC_VERSION 0 #endif #ifndef FMT_GCC_PRAGMA // Workaround _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884. # if FMT_GCC_VERSION >= 504 # define FMT_GCC_PRAGMA(arg) _Pragma(arg) # else # define FMT_GCC_PRAGMA(arg) # endif #endif #ifdef __ICL # define FMT_ICC_VERSION __ICL #elif defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #else # define FMT_ICC_VERSION 0 #endif #ifdef _MSC_VER # define FMT_MSC_VERSION _MSC_VER # define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__)) #else # define FMT_MSC_VERSION 0 # define FMT_MSC_WARNING(...) #endif #ifdef _MSVC_LANG # define FMT_CPLUSPLUS _MSVC_LANG #else # define FMT_CPLUSPLUS __cplusplus #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #if defined(__has_include) || FMT_ICC_VERSION >= 1600 || FMT_MSC_VERSION > 1900 # define FMT_HAS_INCLUDE(x) __has_include(x) #else # define FMT_HAS_INCLUDE(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \ (FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \ (FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute)) // Check if relaxed C++14 constexpr is supported. // GCC doesn't allow throw in constexpr until version 6 (bug 67371). #ifndef FMT_USE_CONSTEXPR # if (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912 || \ (FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L)) && \ !FMT_ICC_VERSION && !defined(__NVCC__) # define FMT_USE_CONSTEXPR 1 # else # define FMT_USE_CONSTEXPR 0 # endif #endif #if FMT_USE_CONSTEXPR # define FMT_CONSTEXPR constexpr #else # define FMT_CONSTEXPR #endif #if ((FMT_CPLUSPLUS >= 202002L) && \ (!defined(_GLIBCXX_RELEASE) || _GLIBCXX_RELEASE > 9)) || \ (FMT_CPLUSPLUS >= 201709L && FMT_GCC_VERSION >= 1002) # define FMT_CONSTEXPR20 constexpr #else # define FMT_CONSTEXPR20 #endif // Check if constexpr std::char_traits<>::{compare,length} are supported. #if defined(__GLIBCXX__) # if FMT_CPLUSPLUS >= 201703L && defined(_GLIBCXX_RELEASE) && \ _GLIBCXX_RELEASE >= 7 // GCC 7+ libstdc++ has _GLIBCXX_RELEASE. # define FMT_CONSTEXPR_CHAR_TRAITS constexpr # endif #elif defined(_LIBCPP_VERSION) && FMT_CPLUSPLUS >= 201703L && \ _LIBCPP_VERSION >= 4000 # define FMT_CONSTEXPR_CHAR_TRAITS constexpr #elif FMT_MSC_VERSION >= 1914 && FMT_CPLUSPLUS >= 201703L # define FMT_CONSTEXPR_CHAR_TRAITS constexpr #endif #ifndef FMT_CONSTEXPR_CHAR_TRAITS # define FMT_CONSTEXPR_CHAR_TRAITS #endif // Check if exceptions are disabled. #ifndef FMT_EXCEPTIONS # if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \ (FMT_MSC_VERSION && !_HAS_EXCEPTIONS) # define FMT_EXCEPTIONS 0 # else # define FMT_EXCEPTIONS 1 # endif #endif // Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings. #if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && \ !defined(__NVCC__) # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_NODISCARD # if FMT_HAS_CPP17_ATTRIBUTE(nodiscard) # define FMT_NODISCARD [[nodiscard]] # else # define FMT_NODISCARD # endif #endif #ifndef FMT_INLINE # if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_INLINE inline __attribute__((always_inline)) # else # define FMT_INLINE inline # endif #endif // An inline std::forward replacement. #define FMT_FORWARD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__) #ifdef _MSC_VER # define FMT_UNCHECKED_ITERATOR(It) \ using _Unchecked_type = It // Mark iterator as checked. #else # define FMT_UNCHECKED_ITERATOR(It) using unchecked_type = It #endif #ifndef FMT_BEGIN_NAMESPACE # define FMT_BEGIN_NAMESPACE \ namespace fmt { \ inline namespace v10 { # define FMT_END_NAMESPACE \ } \ } #endif #ifndef FMT_MODULE_EXPORT # define FMT_MODULE_EXPORT # define FMT_BEGIN_EXPORT # define FMT_END_EXPORT #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # ifdef FMT_LIB_EXPORT # define FMT_API __declspec(dllexport) # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # endif #else # if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED) # if defined(__GNUC__) || defined(__clang__) # define FMT_API __attribute__((visibility("default"))) # endif # endif #endif #ifndef FMT_API # define FMT_API #endif // libc++ supports string_view in pre-c++17. #if FMT_HAS_INCLUDE(<string_view>) && \ (FMT_CPLUSPLUS >= 201703L || defined(_LIBCPP_VERSION)) # include <string_view> # define FMT_USE_STRING_VIEW #elif FMT_HAS_INCLUDE("experimental/string_view") && FMT_CPLUSPLUS >= 201402L # include <experimental/string_view> # define FMT_USE_EXPERIMENTAL_STRING_VIEW #endif #ifndef FMT_UNICODE # define FMT_UNICODE !FMT_MSC_VERSION #endif #ifndef FMT_CONSTEVAL # if ((FMT_GCC_VERSION >= 1000 || FMT_CLANG_VERSION >= 1101) && \ (!defined(__apple_build_version__) || \ __apple_build_version__ >= 14000029L) && \ FMT_CPLUSPLUS >= 202002L) || \ (defined(__cpp_consteval) && \ (!FMT_MSC_VERSION || _MSC_FULL_VER >= 193030704)) // consteval is broken in MSVC before VS2022 and Apple clang before 14. # define FMT_CONSTEVAL consteval # define FMT_HAS_CONSTEVAL # else # define FMT_CONSTEVAL # endif #endif #ifndef FMT_USE_NONTYPE_TEMPLATE_ARGS # if defined(__cpp_nontype_template_args) && \ ((FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L) || \ __cpp_nontype_template_args >= 201911L) && \ !defined(__NVCOMPILER) && !defined(__LCC__) # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1 # else # define FMT_USE_NONTYPE_TEMPLATE_ARGS 0 # endif #endif #if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L # define FMT_INLINE_VARIABLE inline #else # define FMT_INLINE_VARIABLE #endif // Enable minimal optimizations for more compact code in debug mode. FMT_GCC_PRAGMA("GCC push_options") #if !defined(__OPTIMIZE__) && !defined(__NVCOMPILER) && !defined(__LCC__) && \ !defined(__CUDACC__) FMT_GCC_PRAGMA("GCC optimize(\"Og\")") #endif FMT_BEGIN_NAMESPACE // Implementations of enable_if_t and other metafunctions for older systems. template <bool B, typename T = void> using enable_if_t = typename std::enable_if<B, T>::type; template <bool B, typename T, typename F> using conditional_t = typename std::conditional<B, T, F>::type; template <bool B> using bool_constant = std::integral_constant<bool, B>; template <typename T> using remove_reference_t = typename std::remove_reference<T>::type; template <typename T> using remove_const_t = typename std::remove_const<T>::type; template <typename T> using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type; template <typename T> struct type_identity { using type = T; }; template <typename T> using type_identity_t = typename type_identity<T>::type; template <typename T> using underlying_t = typename std::underlying_type<T>::type; struct monostate { constexpr monostate() {} }; // An enable_if helper to be used in template parameters which results in much // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed // to workaround a bug in MSVC 2019 (see #1140 and #1186). #ifdef FMT_DOC # define FMT_ENABLE_IF(...) #else # define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0 #endif #ifdef __cpp_lib_byte inline auto format_as(std::byte b) -> unsigned char { return static_cast<unsigned char>(b); } #endif namespace detail { // Suppresses "unused variable" warnings with the method described in // https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/. // (void)var does not work on many Intel compilers. template <typename... T> FMT_CONSTEXPR void ignore_unused(const T&...) {} constexpr FMT_INLINE auto is_constant_evaluated( bool default_value = false) noexcept -> bool { // Workaround for incompatibility between libstdc++ consteval-based // std::is_constant_evaluated() implementation and clang-14. // https://github.com/fmtlib/fmt/issues/3247 #if FMT_CPLUSPLUS >= 202002L && defined(_GLIBCXX_RELEASE) && \ _GLIBCXX_RELEASE >= 12 && \ (FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500) ignore_unused(default_value); return __builtin_is_constant_evaluated(); #elif defined(__cpp_lib_is_constant_evaluated) ignore_unused(default_value); return std::is_constant_evaluated(); #else return default_value; #endif } // Suppresses "conditional expression is constant" warnings. template <typename T> constexpr FMT_INLINE auto const_check(T value) -> T { return value; } FMT_NORETURN FMT_API void assert_fail(const char* file, int line, const char* message); #ifndef FMT_ASSERT # ifdef NDEBUG // FMT_ASSERT is not empty to avoid -Wempty-body. # define FMT_ASSERT(condition, message) \ fmt::detail::ignore_unused((condition), (message)) # else # define FMT_ASSERT(condition, message) \ ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \ ? (void)0 \ : fmt::detail::assert_fail(__FILE__, __LINE__, (message))) # endif #endif #if defined(FMT_USE_STRING_VIEW) template <typename Char> using std_string_view = std::basic_string_view<Char>; #elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW) template <typename Char> using std_string_view = std::experimental::basic_string_view<Char>; #else template <typename T> struct std_string_view {}; #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \ !(FMT_CLANG_VERSION && FMT_MSC_VERSION) # define FMT_USE_INT128 1 using int128_opt = __int128_t; // An optional native 128-bit integer. using uint128_opt = __uint128_t; template <typename T> inline auto convert_for_visit(T value) -> T { return value; } #else # define FMT_USE_INT128 0 #endif #if !FMT_USE_INT128 enum class int128_opt {}; enum class uint128_opt {}; // Reduce template instantiations. template <typename T> auto convert_for_visit(T) -> monostate { return {}; } #endif // Casts a nonnegative integer to unsigned. template <typename Int> FMT_CONSTEXPR auto to_unsigned(Int value) -> typename std::make_unsigned<Int>::type { FMT_ASSERT(std::is_unsigned<Int>::value || value >= 0, "negative value"); return static_cast<typename std::make_unsigned<Int>::type>(value); } FMT_CONSTEXPR inline auto is_utf8() -> bool { FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char section[] = "\u00A7"; // Avoid buggy sign extensions in MSVC's constant evaluation mode (#2297). using uchar = unsigned char; return FMT_UNICODE || (sizeof(section) == 3 && uchar(section[0]) == 0xC2 && uchar(section[1]) == 0xA7); } } // namespace detail /** An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. ``fmt::basic_string_view`` is used for format strings even if ``std::string_view`` is available to prevent issues when a library is compiled with a different ``-std`` option than the client code (which is not recommended). */ FMT_MODULE_EXPORT template <typename Char> class basic_string_view { private: const Char* data_; size_t size_; public: using value_type = Char; using iterator = const Char*; constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {} /** Constructs a string reference object from a C string and a size. */ constexpr basic_string_view(const Char* s, size_t count) noexcept : data_(s), size_(count) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits<Char>::length``. \endrst */ FMT_CONSTEXPR_CHAR_TRAITS FMT_INLINE basic_string_view(const Char* s) : data_(s), size_(detail::const_check(std::is_same<Char, char>::value && !detail::is_constant_evaluated(true)) ? std::strlen(reinterpret_cast<const char*>(s)) : std::char_traits<Char>::length(s)) {} /** Constructs a string reference from a ``std::basic_string`` object. */ template <typename Traits, typename Alloc> FMT_CONSTEXPR basic_string_view( const std::basic_string<Char, Traits, Alloc>& s) noexcept : data_(s.data()), size_(s.size()) {} template <typename S, FMT_ENABLE_IF(std::is_same< S, detail::std_string_view<Char>>::value)> FMT_CONSTEXPR basic_string_view(S s) noexcept : data_(s.data()), size_(s.size()) {} /** Returns a pointer to the string data. */ constexpr auto data() const noexcept -> const Char* { return data_; } /** Returns the string size. */ constexpr auto size() const noexcept -> size_t { return size_; } constexpr auto begin() const noexcept -> iterator { return data_; } constexpr auto end() const noexcept -> iterator { return data_ + size_; } constexpr auto operator[](size_t pos) const noexcept -> const Char& { return data_[pos]; } FMT_CONSTEXPR void remove_prefix(size_t n) noexcept { data_ += n; size_ -= n; } FMT_CONSTEXPR_CHAR_TRAITS bool starts_with( basic_string_view<Char> sv) const noexcept { return size_ >= sv.size_ && std::char_traits<Char>::compare(data_, sv.data_, sv.size_) == 0; } FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(Char c) const noexcept { return size_ >= 1 && std::char_traits<Char>::eq(*data_, c); } FMT_CONSTEXPR_CHAR_TRAITS bool starts_with(const Char* s) const { return starts_with(basic_string_view<Char>(s)); } // Lexicographically compare this string reference to other. FMT_CONSTEXPR_CHAR_TRAITS auto compare(basic_string_view other) const -> int { size_t str_size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits<Char>::compare(data_, other.data_, str_size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } FMT_CONSTEXPR_CHAR_TRAITS friend auto operator==(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) == 0; } friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) != 0; } friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) < 0; } friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) <= 0; } friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) > 0; } friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) >= 0; } }; FMT_MODULE_EXPORT using string_view = basic_string_view<char>; /** Specifies if ``T`` is a character type. Can be specialized by users. */ FMT_MODULE_EXPORT template <typename T> struct is_char : std::false_type {}; template <> struct is_char<char> : std::true_type {}; namespace detail { // A base class for compile-time strings. struct compile_string {}; template <typename S> struct is_compile_string : std::is_base_of<compile_string, S> {}; template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)> FMT_INLINE auto to_string_view(const Char* s) -> basic_string_view<Char> { return s; } template <typename Char, typename Traits, typename Alloc> inline auto to_string_view(const std::basic_string<Char, Traits, Alloc>& s) -> basic_string_view<Char> { return s; } template <typename Char> constexpr auto to_string_view(basic_string_view<Char> s) -> basic_string_view<Char> { return s; } template <typename Char, FMT_ENABLE_IF(!std::is_empty<std_string_view<Char>>::value)> inline auto to_string_view(std_string_view<Char> s) -> basic_string_view<Char> { return s; } template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> constexpr auto to_string_view(const S& s) -> basic_string_view<typename S::char_type> { return basic_string_view<typename S::char_type>(s); } void to_string_view(...); // Specifies whether S is a string type convertible to fmt::basic_string_view. // It should be a constexpr function but MSVC 2017 fails to compile it in // enable_if and MSVC 2015 fails to compile it as an alias template. // ADL is intentionally disabled as to_string_view is not an extension point. template <typename S> struct is_string : std::is_class<decltype(detail::to_string_view(std::declval<S>()))> {}; template <typename S, typename = void> struct char_t_impl {}; template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> { using result = decltype(to_string_view(std::declval<S>())); using type = typename result::value_type; }; enum class type { none_type, // Integer types should go first, int_type, uint_type, long_long_type, ulong_long_type, int128_type, uint128_type, bool_type, char_type, last_integer_type = char_type, // followed by floating-point types. float_type, double_type, long_double_type, last_numeric_type = long_double_type, cstring_type, string_type, pointer_type, custom_type }; // Maps core type T to the corresponding type enum constant. template <typename T, typename Char> struct type_constant : std::integral_constant<type, type::custom_type> {}; #define FMT_TYPE_CONSTANT(Type, constant) \ template <typename Char> \ struct type_constant<Type, Char> \ : std::integral_constant<type, type::constant> {} FMT_TYPE_CONSTANT(int, int_type); FMT_TYPE_CONSTANT(unsigned, uint_type); FMT_TYPE_CONSTANT(long long, long_long_type); FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type); FMT_TYPE_CONSTANT(int128_opt, int128_type); FMT_TYPE_CONSTANT(uint128_opt, uint128_type); FMT_TYPE_CONSTANT(bool, bool_type); FMT_TYPE_CONSTANT(Char, char_type); FMT_TYPE_CONSTANT(float, float_type); FMT_TYPE_CONSTANT(double, double_type); FMT_TYPE_CONSTANT(long double, long_double_type); FMT_TYPE_CONSTANT(const Char*, cstring_type); FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type); FMT_TYPE_CONSTANT(const void*, pointer_type); constexpr bool is_integral_type(type t) { return t > type::none_type && t <= type::last_integer_type; } constexpr bool is_arithmetic_type(type t) { return t > type::none_type && t <= type::last_numeric_type; } constexpr auto set(type rhs) -> int { return 1 << static_cast<int>(rhs); } constexpr auto in(type t, int set) -> bool { return ((set >> static_cast<int>(t)) & 1) != 0; } // Bitsets of types. enum { sint_set = set(type::int_type) | set(type::long_long_type) | set(type::int128_type), uint_set = set(type::uint_type) | set(type::ulong_long_type) | set(type::uint128_type), bool_set = set(type::bool_type), char_set = set(type::char_type), float_set = set(type::float_type) | set(type::double_type) | set(type::long_double_type), string_set = set(type::string_type), cstring_set = set(type::cstring_type), pointer_set = set(type::pointer_type) }; FMT_NORETURN FMT_API void throw_format_error(const char* message); struct error_handler { constexpr error_handler() = default; // This function is intentionally not constexpr to give a compile-time error. FMT_NORETURN void on_error(const char* message) { throw_format_error(message); } }; } // namespace detail /** String's character type. */ template <typename S> using char_t = typename detail::char_t_impl<S>::type; /** \rst Parsing context consisting of a format string range being parsed and an argument counter for automatic indexing. You can use the ``format_parse_context`` type alias for ``char`` instead. \endrst */ FMT_MODULE_EXPORT template <typename Char> class basic_format_parse_context { private: basic_string_view<Char> format_str_; int next_arg_id_; FMT_CONSTEXPR void do_check_arg_id(int id); public: using char_type = Char; using iterator = const Char*; explicit constexpr basic_format_parse_context( basic_string_view<Char> format_str, int next_arg_id = 0) : format_str_(format_str), next_arg_id_(next_arg_id) {} /** Returns an iterator to the beginning of the format string range being parsed. */ constexpr auto begin() const noexcept -> iterator { return format_str_.begin(); } /** Returns an iterator past the end of the format string range being parsed. */ constexpr auto end() const noexcept -> iterator { return format_str_.end(); } /** Advances the begin iterator to ``it``. */ FMT_CONSTEXPR void advance_to(iterator it) { format_str_.remove_prefix(detail::to_unsigned(it - begin())); } /** Reports an error if using the manual argument indexing; otherwise returns the next argument index and switches to the automatic indexing. */ FMT_CONSTEXPR auto next_arg_id() -> int { if (next_arg_id_ < 0) { detail::throw_format_error( "cannot switch from manual to automatic argument indexing"); return 0; } int id = next_arg_id_++; do_check_arg_id(id); return id; } /** Reports an error if using the automatic argument indexing; otherwise switches to the manual indexing. */ FMT_CONSTEXPR void check_arg_id(int id) { if (next_arg_id_ > 0) { detail::throw_format_error( "cannot switch from automatic to manual argument indexing"); return; } next_arg_id_ = -1; do_check_arg_id(id); } FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {} FMT_CONSTEXPR void check_dynamic_spec(int arg_id); }; FMT_MODULE_EXPORT using format_parse_context = basic_format_parse_context<char>; namespace detail { // A parse context with extra data used only in compile-time checks. template <typename Char> class compile_parse_context : public basic_format_parse_context<Char> { private: int num_args_; const type* types_; using base = basic_format_parse_context<Char>; public: explicit FMT_CONSTEXPR compile_parse_context( basic_string_view<Char> format_str, int num_args, const type* types, int next_arg_id = 0) : base(format_str, next_arg_id), num_args_(num_args), types_(types) {} constexpr auto num_args() const -> int { return num_args_; } constexpr auto arg_type(int id) const -> type { return types_[id]; } FMT_CONSTEXPR auto next_arg_id() -> int { int id = base::next_arg_id(); if (id >= num_args_) throw_format_error("argument not found"); return id; } FMT_CONSTEXPR void check_arg_id(int id) { base::check_arg_id(id); if (id >= num_args_) throw_format_error("argument not found"); } using base::check_arg_id; FMT_CONSTEXPR void check_dynamic_spec(int arg_id) { detail::ignore_unused(arg_id); #if !defined(__LCC__) if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id])) throw_format_error("width/precision is not integer"); #endif } }; } // namespace detail template <typename Char> FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) { // Argument id is only checked at compile-time during parsing because // formatting has its own validation. if (detail::is_constant_evaluated() && (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) { using context = detail::compile_parse_context<Char>; if (id >= static_cast<context*>(this)->num_args()) detail::throw_format_error("argument not found"); } } template <typename Char> FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec( int arg_id) { if (detail::is_constant_evaluated() && (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) { using context = detail::compile_parse_context<Char>; static_cast<context*>(this)->check_dynamic_spec(arg_id); } } FMT_MODULE_EXPORT template <typename Context> class basic_format_arg; FMT_MODULE_EXPORT template <typename Context> class basic_format_args; FMT_MODULE_EXPORT template <typename Context> class dynamic_format_arg_store; // A formatter for objects of type T. FMT_MODULE_EXPORT template <typename T, typename Char = char, typename Enable = void> struct formatter { // A deleted default constructor indicates a disabled formatter. formatter() = delete; }; // Specifies if T has an enabled formatter specialization. A type can be // formattable even if it doesn't have a formatter e.g. via a conversion. template <typename T, typename Context> using has_formatter = std::is_constructible<typename Context::template formatter_type<T>>; // Checks whether T is a container with contiguous storage. template <typename T> struct is_contiguous : std::false_type {}; template <typename Char> struct is_contiguous<std::basic_string<Char>> : std::true_type {}; class appender; namespace detail { template <typename Context, typename T> constexpr auto has_const_formatter_impl(T*) -> decltype(typename Context::template formatter_type<T>().format( std::declval<const T&>(), std::declval<Context&>()), true) { return true; } template <typename Context> constexpr auto has_const_formatter_impl(...) -> bool { return false; } template <typename T, typename Context> constexpr auto has_const_formatter() -> bool { return has_const_formatter_impl<Context>(static_cast<T*>(nullptr)); } // Extracts a reference to the container from back_insert_iterator. template <typename Container> inline auto get_container(std::back_insert_iterator<Container> it) -> Container& { using base = std::back_insert_iterator<Container>; struct accessor : base { accessor(base b) : base(b) {} using base::container; }; return *accessor(it).container; } template <typename Char, typename InputIt, typename OutputIt> FMT_CONSTEXPR auto copy_str(InputIt begin, InputIt end, OutputIt out) -> OutputIt { while (begin != end) *out++ = static_cast<Char>(*begin++); return out; } template <typename Char, typename T, typename U, FMT_ENABLE_IF( std::is_same<remove_const_t<T>, U>::value&& is_char<U>::value)> FMT_CONSTEXPR auto copy_str(T* begin, T* end, U* out) -> U* { if (is_constant_evaluated()) return copy_str<Char, T*, U*>(begin, end, out); auto size = to_unsigned(end - begin); if (size > 0) memcpy(out, begin, size * sizeof(U)); return out + size; } /** \rst A contiguous memory buffer with an optional growing ability. It is an internal class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`. \endrst */ template <typename T> class buffer { private: T* ptr_; size_t size_; size_t capacity_; protected: // Don't initialize ptr_ since it is not accessed to save a few cycles. FMT_MSC_WARNING(suppress : 26495) buffer(size_t sz) noexcept : size_(sz), capacity_(sz) {} FMT_CONSTEXPR20 buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) noexcept : ptr_(p), size_(sz), capacity_(cap) {} FMT_CONSTEXPR20 ~buffer() = default; buffer(buffer&&) = default; /** Sets the buffer data and capacity. */ FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept { ptr_ = buf_data; capacity_ = buf_capacity; } /** Increases the buffer capacity to hold at least *capacity* elements. */ virtual FMT_CONSTEXPR20 void grow(size_t capacity) = 0; public: using value_type = T; using const_reference = const T&; buffer(const buffer&) = delete; void operator=(const buffer&) = delete; FMT_INLINE auto begin() noexcept -> T* { return ptr_; } FMT_INLINE auto end() noexcept -> T* { return ptr_ + size_; } FMT_INLINE auto begin() const noexcept -> const T* { return ptr_; } FMT_INLINE auto end() const noexcept -> const T* { return ptr_ + size_; } /** Returns the size of this buffer. */ constexpr auto size() const noexcept -> size_t { return size_; } /** Returns the capacity of this buffer. */ constexpr auto capacity() const noexcept -> size_t { return capacity_; } /** Returns a pointer to the buffer data. */ FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; } /** Returns a pointer to the buffer data. */ FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; } /** Clears this buffer. */ void clear() { size_ = 0; } // Tries resizing the buffer to contain *count* elements. If T is a POD type // the new elements may not be initialized. FMT_CONSTEXPR20 void try_resize(size_t count) { try_reserve(count); size_ = count <= capacity_ ? count : capacity_; } // Tries increasing the buffer capacity to *new_capacity*. It can increase the // capacity by a smaller amount than requested but guarantees there is space // for at least one additional element either by increasing the capacity or by // flushing the buffer if it is full. FMT_CONSTEXPR20 void try_reserve(size_t new_capacity) { if (new_capacity > capacity_) grow(new_capacity); } FMT_CONSTEXPR20 void push_back(const T& value) { try_reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template <typename U> void append(const U* begin, const U* end); template <typename Idx> FMT_CONSTEXPR auto operator[](Idx index) -> T& { return ptr_[index]; } template <typename Idx> FMT_CONSTEXPR auto operator[](Idx index) const -> const T& { return ptr_[index]; } }; struct buffer_traits { explicit buffer_traits(size_t) {} auto count() const -> size_t { return 0; } auto limit(size_t size) -> size_t { return size; } }; class fixed_buffer_traits { private: size_t count_ = 0; size_t limit_; public: explicit fixed_buffer_traits(size_t limit) : limit_(limit) {} auto count() const -> size_t { return count_; } auto limit(size_t size) -> size_t { size_t n = limit_ > count_ ? limit_ - count_ : 0; count_ += size; return size < n ? size : n; } }; // A buffer that writes to an output iterator when flushed. template <typename OutputIt, typename T, typename Traits = buffer_traits> class iterator_buffer final : public Traits, public buffer<T> { private: OutputIt out_; enum { buffer_size = 256 }; T data_[buffer_size]; protected: FMT_CONSTEXPR20 void grow(size_t) override { if (this->size() == buffer_size) flush(); } void flush() { auto size = this->size(); this->clear(); out_ = copy_str<T>(data_, data_ + this->limit(size), out_); } public: explicit iterator_buffer(OutputIt out, size_t n = buffer_size) : Traits(n), buffer<T>(data_, 0, buffer_size), out_(out) {} iterator_buffer(iterator_buffer&& other) : Traits(other), buffer<T>(data_, 0, buffer_size), out_(other.out_) {} ~iterator_buffer() { flush(); } auto out() -> OutputIt { flush(); return out_; } auto count() const -> size_t { return Traits::count() + this->size(); } }; template <typename T> class iterator_buffer<T*, T, fixed_buffer_traits> final : public fixed_buffer_traits, public buffer<T> { private: T* out_; enum { buffer_size = 256 }; T data_[buffer_size]; protected: FMT_CONSTEXPR20 void grow(size_t) override { if (this->size() == this->capacity()) flush(); } void flush() { size_t n = this->limit(this->size()); if (this->data() == out_) { out_ += n; this->set(data_, buffer_size); } this->clear(); } public: explicit iterator_buffer(T* out, size_t n = buffer_size) : fixed_buffer_traits(n), buffer<T>(out, 0, n), out_(out) {} iterator_buffer(iterator_buffer&& other) : fixed_buffer_traits(other), buffer<T>(std::move(other)), out_(other.out_) { if (this->data() != out_) { this->set(data_, buffer_size); this->clear(); } } ~iterator_buffer() { flush(); } auto out() -> T* { flush(); return out_; } auto count() const -> size_t { return fixed_buffer_traits::count() + this->size(); } }; template <typename T> class iterator_buffer<T*, T> final : public buffer<T> { protected: FMT_CONSTEXPR20 void grow(size_t) override {} public: explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {} auto out() -> T* { return &*this->end(); } }; // A buffer that writes to a container with the contiguous storage. template <typename Container> class iterator_buffer<std::back_insert_iterator<Container>, enable_if_t<is_contiguous<Container>::value, typename Container::value_type>> final : public buffer<typename Container::value_type> { private: Container& container_; protected: FMT_CONSTEXPR20 void grow(size_t capacity) override { container_.resize(capacity); this->set(&container_[0], capacity); } public: explicit iterator_buffer(Container& c) : buffer<typename Container::value_type>(c.size()), container_(c) {} explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0) : iterator_buffer(get_container(out)) {} auto out() -> std::back_insert_iterator<Container> { return std::back_inserter(container_); } }; // A buffer that counts the number of code units written discarding the output. template <typename T = char> class counting_buffer final : public buffer<T> { private: enum { buffer_size = 256 }; T data_[buffer_size]; size_t count_ = 0; protected: FMT_CONSTEXPR20 void grow(size_t) override { if (this->size() != buffer_size) return; count_ += this->size(); this->clear(); } public: counting_buffer() : buffer<T>(data_, 0, buffer_size) {} auto count() -> size_t { return count_ + this->size(); } }; template <typename T> using buffer_appender = conditional_t<std::is_same<T, char>::value, appender, std::back_insert_iterator<buffer<T>>>; // Maps an output iterator to a buffer. template <typename T, typename OutputIt> auto get_buffer(OutputIt out) -> iterator_buffer<OutputIt, T> { return iterator_buffer<OutputIt, T>(out); } template <typename T, typename Buf, FMT_ENABLE_IF(std::is_base_of<buffer<char>, Buf>::value)> auto get_buffer(std::back_insert_iterator<Buf> out) -> buffer<char>& { return get_container(out); } template <typename Buf, typename OutputIt> FMT_INLINE auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) { return buf.out(); } template <typename T, typename OutputIt> auto get_iterator(buffer<T>&, OutputIt out) -> OutputIt { return out; } struct view {}; template <typename Char, typename T> struct named_arg : view { const Char* name; const T& value; named_arg(const Char* n, const T& v) : name(n), value(v) {} }; template <typename Char> struct named_arg_info { const Char* name; int id; }; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> struct arg_data { // args_[0].named_args points to named_args_ to avoid bloating format_args. // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)]; named_arg_info<Char> named_args_[NUM_NAMED_ARGS]; template <typename... U> arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {} arg_data(const arg_data& other) = delete; auto args() const -> const T* { return args_ + 1; } auto named_args() -> named_arg_info<Char>* { return named_args_; } }; template <typename T, typename Char, size_t NUM_ARGS> struct arg_data<T, Char, NUM_ARGS, 0> { // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[NUM_ARGS != 0 ? NUM_ARGS : +1]; template <typename... U> FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {} FMT_CONSTEXPR FMT_INLINE auto args() const -> const T* { return args_; } FMT_CONSTEXPR FMT_INLINE auto named_args() -> std::nullptr_t { return nullptr; } }; template <typename Char> inline void init_named_args(named_arg_info<Char>*, int, int) {} template <typename T> struct is_named_arg : std::false_type {}; template <typename T> struct is_statically_named_arg : std::false_type {}; template <typename T, typename Char> struct is_named_arg<named_arg<Char, T>> : std::true_type {}; template <typename Char, typename T, typename... Tail, FMT_ENABLE_IF(!is_named_arg<T>::value)> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const T&, const Tail&... args) { init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename Char, typename T, typename... Tail, FMT_ENABLE_IF(is_named_arg<T>::value)> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const T& arg, const Tail&... args) { named_args[named_arg_count++] = {arg.name, arg_count}; init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename... Args> FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {} template <bool B = false> constexpr auto count() -> size_t { return B ? 1 : 0; } template <bool B1, bool B2, bool... Tail> constexpr auto count() -> size_t { return (B1 ? 1 : 0) + count<B2, Tail...>(); } template <typename... Args> constexpr auto count_named_args() -> size_t { return count<is_named_arg<Args>::value...>(); } template <typename... Args> constexpr auto count_statically_named_args() -> size_t { return count<is_statically_named_arg<Args>::value...>(); } struct unformattable {}; struct unformattable_char : unformattable {}; struct unformattable_pointer : unformattable {}; template <typename Char> struct string_value { const Char* data; size_t size; }; template <typename Char> struct named_arg_value { const named_arg_info<Char>* data; size_t size; }; template <typename Context> struct custom_value { using parse_context = typename Context::parse_context_type; void* value; void (*format)(void* arg, parse_context& parse_ctx, Context& ctx); }; // A formatting argument value. template <typename Context> class value { public: using char_type = typename Context::char_type; union { monostate no_value; int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; int128_opt int128_value; uint128_opt uint128_value; bool bool_value; char_type char_value; float float_value; double double_value; long double long_double_value; const void* pointer; string_value<char_type> string; custom_value<Context> custom; named_arg_value<char_type> named_args; }; constexpr FMT_INLINE value() : no_value() {} constexpr FMT_INLINE value(int val) : int_value(val) {} constexpr FMT_INLINE value(unsigned val) : uint_value(val) {} constexpr FMT_INLINE value(long long val) : long_long_value(val) {} constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {} FMT_INLINE value(int128_opt val) : int128_value(val) {} FMT_INLINE value(uint128_opt val) : uint128_value(val) {} constexpr FMT_INLINE value(float val) : float_value(val) {} constexpr FMT_INLINE value(double val) : double_value(val) {} FMT_INLINE value(long double val) : long_double_value(val) {} constexpr FMT_INLINE value(bool val) : bool_value(val) {} constexpr FMT_INLINE value(char_type val) : char_value(val) {} FMT_CONSTEXPR FMT_INLINE value(const char_type* val) { string.data = val; if (is_constant_evaluated()) string.size = {}; } FMT_CONSTEXPR FMT_INLINE value(basic_string_view<char_type> val) { string.data = val.data(); string.size = val.size(); } FMT_INLINE value(const void* val) : pointer(val) {} FMT_INLINE value(const named_arg_info<char_type>* args, size_t size) : named_args{args, size} {} template <typename T> FMT_CONSTEXPR FMT_INLINE value(T& val) { using value_type = remove_cvref_t<T>; custom.value = const_cast<value_type*>(&val); // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter<T>` for `format` and // `printf_formatter<T>` for `printf`. custom.format = format_custom_arg< value_type, typename Context::template formatter_type<value_type>>; } value(unformattable); value(unformattable_char); value(unformattable_pointer); private: // Formats an argument of a custom type, such as a user-defined class. template <typename T, typename Formatter> static void format_custom_arg(void* arg, typename Context::parse_context_type& parse_ctx, Context& ctx) { auto f = Formatter(); parse_ctx.advance_to(f.parse(parse_ctx)); using qualified_type = conditional_t<has_const_formatter<T, Context>(), const T, T>; ctx.advance_to(f.format(*static_cast<qualified_type*>(arg), ctx)); } }; template <typename Context, typename T> FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context>; // To minimize the number of types we need to deal with, long is translated // either to int or to long long depending on its size. enum { long_short = sizeof(long) == sizeof(int) }; using long_type = conditional_t<long_short, int, long long>; using ulong_type = conditional_t<long_short, unsigned, unsigned long long>; template <typename T> struct format_as_result { template <typename U, FMT_ENABLE_IF(std::is_enum<U>::value || std::is_class<U>::value)> static auto map(U*) -> decltype(format_as(std::declval<U>())); static auto map(...) -> void; using type = decltype(map(static_cast<T*>(nullptr))); }; template <typename T> using format_as_t = typename format_as_result<T>::type; template <typename T> struct has_format_as : bool_constant<!std::is_same<format_as_t<T>, void>::value> {}; // Maps formatting arguments to core types. // arg_mapper reports errors by returning unformattable instead of using // static_assert because it's used in the is_formattable trait. template <typename Context> struct arg_mapper { using char_type = typename Context::char_type; FMT_CONSTEXPR FMT_INLINE auto map(signed char val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned char val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(short val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned short val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(int val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long val) -> long_type { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned long val) -> ulong_type { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long long val) -> long long { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned long long val) -> unsigned long long { return val; } FMT_CONSTEXPR FMT_INLINE auto map(int128_opt val) -> int128_opt { return val; } FMT_CONSTEXPR FMT_INLINE auto map(uint128_opt val) -> uint128_opt { return val; } FMT_CONSTEXPR FMT_INLINE auto map(bool val) -> bool { return val; } template <typename T, FMT_ENABLE_IF(std::is_same<T, char>::value || std::is_same<T, char_type>::value)> FMT_CONSTEXPR FMT_INLINE auto map(T val) -> char_type { return val; } template <typename T, enable_if_t<(std::is_same<T, wchar_t>::value || #ifdef __cpp_char8_t std::is_same<T, char8_t>::value || #endif std::is_same<T, char16_t>::value || std::is_same<T, char32_t>::value) && !std::is_same<T, char_type>::value, int> = 0> FMT_CONSTEXPR FMT_INLINE auto map(T) -> unformattable_char { return {}; } FMT_CONSTEXPR FMT_INLINE auto map(float val) -> float { return val; } FMT_CONSTEXPR FMT_INLINE auto map(double val) -> double { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long double val) -> long double { return val; } FMT_CONSTEXPR FMT_INLINE auto map(char_type* val) -> const char_type* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(const char_type* val) -> const char_type* { return val; } template <typename T, FMT_ENABLE_IF(is_string<T>::value && !std::is_pointer<T>::value && std::is_same<char_type, char_t<T>>::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> basic_string_view<char_type> { return to_string_view(val); } template <typename T, FMT_ENABLE_IF(is_string<T>::value && !std::is_pointer<T>::value && !std::is_same<char_type, char_t<T>>::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T&) -> unformattable_char { return {}; } FMT_CONSTEXPR FMT_INLINE auto map(void* val) -> const void* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(const void* val) -> const void* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(std::nullptr_t val) -> const void* { return val; } // Use SFINAE instead of a const T* parameter to avoid a conflict with the // array overload. template < typename T, FMT_ENABLE_IF( std::is_pointer<T>::value || std::is_member_pointer<T>::value || std::is_function<typename std::remove_pointer<T>::type>::value || (std::is_convertible<const T&, const void*>::value && !std::is_convertible<const T&, const char_type*>::value && !has_formatter<T, Context>::value))> FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer { return {}; } template <typename T, std::size_t N, FMT_ENABLE_IF(!std::is_same<T, wchar_t>::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T (&values)[N]) -> const T (&)[N] { return values; } // Only map owning types because mapping views can be unsafe. template <typename T, typename U = format_as_t<T>, FMT_ENABLE_IF(std::is_arithmetic<U>::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> decltype(this->map(U())) { return map(format_as(val)); } template <typename T, typename U = remove_cvref_t<T>> struct formattable : bool_constant<has_const_formatter<U, Context>() || (has_formatter<U, Context>::value && !std::is_const<remove_reference_t<T>>::value)> {}; template <typename T, FMT_ENABLE_IF(formattable<T>::value)> FMT_CONSTEXPR FMT_INLINE auto do_map(T&& val) -> T& { return val; } template <typename T, FMT_ENABLE_IF(!formattable<T>::value)> FMT_CONSTEXPR FMT_INLINE auto do_map(T&&) -> unformattable { return {}; } template <typename T, typename U = remove_cvref_t<T>, FMT_ENABLE_IF((std::is_class<U>::value || std::is_enum<U>::value || std::is_union<U>::value) && !is_string<U>::value && !is_char<U>::value && !is_named_arg<U>::value && !std::is_arithmetic<format_as_t<U>>::value)> FMT_CONSTEXPR FMT_INLINE auto map(T&& val) -> decltype(this->do_map(std::forward<T>(val))) { return do_map(std::forward<T>(val)); } template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& named_arg) -> decltype(this->map(named_arg.value)) { return map(named_arg.value); } auto map(...) -> unformattable { return {}; } }; // A type constant after applying arg_mapper<Context>. template <typename T, typename Context> using mapped_type_constant = type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())), typename Context::char_type>; enum { packed_arg_bits = 4 }; // Maximum number of arguments with packed types. enum { max_packed_args = 62 / packed_arg_bits }; enum : unsigned long long { is_unpacked_bit = 1ULL << 63 }; enum : unsigned long long { has_named_args_bit = 1ULL << 62 }; } // namespace detail // An output iterator that appends to a buffer. // It is used to reduce symbol sizes for the common case. class appender : public std::back_insert_iterator<detail::buffer<char>> { using base = std::back_insert_iterator<detail::buffer<char>>; public: using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator; appender(base it) noexcept : base(it) {} FMT_UNCHECKED_ITERATOR(appender); auto operator++() noexcept -> appender& { return *this; } auto operator++(int) noexcept -> appender { return *this; } }; // A formatting argument. It is a trivially copyable/constructible type to // allow storage in basic_memory_buffer. template <typename Context> class basic_format_arg { private: detail::value<Context> value_; detail::type type_; template <typename ContextType, typename T> friend FMT_CONSTEXPR auto detail::make_arg(T&& value) -> basic_format_arg<ContextType>; template <typename Visitor, typename Ctx> friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis, const basic_format_arg<Ctx>& arg) -> decltype(vis(0)); friend class basic_format_args<Context>; friend class dynamic_format_arg_store<Context>; using char_type = typename Context::char_type; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> friend struct detail::arg_data; basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size) : value_(args, size) {} public: class handle { public: explicit handle(detail::custom_value<Context> custom) : custom_(custom) {} void format(typename Context::parse_context_type& parse_ctx, Context& ctx) const { custom_.format(custom_.value, parse_ctx, ctx); } private: detail::custom_value<Context> custom_; }; constexpr basic_format_arg() : type_(detail::type::none_type) {} constexpr explicit operator bool() const noexcept { return type_ != detail::type::none_type; } auto type() const -> detail::type { return type_; } auto is_integral() const -> bool { return detail::is_integral_type(type_); } auto is_arithmetic() const -> bool { return detail::is_arithmetic_type(type_); } }; /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ FMT_MODULE_EXPORT template <typename Visitor, typename Context> FMT_CONSTEXPR FMT_INLINE auto visit_format_arg( Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) { switch (arg.type_) { case detail::type::none_type: break; case detail::type::int_type: return vis(arg.value_.int_value); case detail::type::uint_type: return vis(arg.value_.uint_value); case detail::type::long_long_type: return vis(arg.value_.long_long_value); case detail::type::ulong_long_type: return vis(arg.value_.ulong_long_value); case detail::type::int128_type: return vis(detail::convert_for_visit(arg.value_.int128_value)); case detail::type::uint128_type: return vis(detail::convert_for_visit(arg.value_.uint128_value)); case detail::type::bool_type: return vis(arg.value_.bool_value); case detail::type::char_type: return vis(arg.value_.char_value); case detail::type::float_type: return vis(arg.value_.float_value); case detail::type::double_type: return vis(arg.value_.double_value); case detail::type::long_double_type: return vis(arg.value_.long_double_value); case detail::type::cstring_type: return vis(arg.value_.string.data); case detail::type::string_type: using sv = basic_string_view<typename Context::char_type>; return vis(sv(arg.value_.string.data, arg.value_.string.size)); case detail::type::pointer_type: return vis(arg.value_.pointer); case detail::type::custom_type: return vis(typename basic_format_arg<Context>::handle(arg.value_.custom)); } return vis(monostate()); } namespace detail { template <typename Char, typename InputIt> auto copy_str(InputIt begin, InputIt end, appender out) -> appender { get_container(out).append(begin, end); return out; } template <typename Char, typename R, typename OutputIt> FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt { return detail::copy_str<Char>(rng.begin(), rng.end(), out); } #if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 // A workaround for gcc 4.8 to make void_t work in a SFINAE context. template <typename...> struct void_t_impl { using type = void; }; template <typename... T> using void_t = typename void_t_impl<T...>::type; #else template <typename...> using void_t = void; #endif template <typename It, typename T, typename Enable = void> struct is_output_iterator : std::false_type {}; template <typename It, typename T> struct is_output_iterator< It, T, void_t<typename std::iterator_traits<It>::iterator_category, decltype(*std::declval<It>() = std::declval<T>())>> : std::true_type {}; template <typename It> struct is_back_insert_iterator : std::false_type {}; template <typename Container> struct is_back_insert_iterator<std::back_insert_iterator<Container>> : std::true_type {}; template <typename It> struct is_contiguous_back_insert_iterator : std::false_type {}; template <typename Container> struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>> : is_contiguous<Container> {}; template <> struct is_contiguous_back_insert_iterator<appender> : std::true_type {}; // A type-erased reference to an std::locale to avoid a heavy <locale> include. class locale_ref { private: const void* locale_; // A type-erased pointer to std::locale. public: constexpr FMT_INLINE locale_ref() : locale_(nullptr) {} template <typename Locale> explicit locale_ref(const Locale& loc); explicit operator bool() const noexcept { return locale_ != nullptr; } template <typename Locale> auto get() const -> Locale; }; template <typename> constexpr auto encode_types() -> unsigned long long { return 0; } template <typename Context, typename Arg, typename... Args> constexpr auto encode_types() -> unsigned long long { return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) | (encode_types<Context, Args...>() << packed_arg_bits); } template <typename Context, typename T> FMT_CONSTEXPR FMT_INLINE auto make_value(T&& val) -> value<Context> { using arg_type = remove_cvref_t<decltype(arg_mapper<Context>().map(val))>; constexpr bool formattable_char = !std::is_same<arg_type, unformattable_char>::value; static_assert(formattable_char, "Mixing character types is disallowed."); // Formatting of arbitrary pointers is disallowed. If you want to format a // pointer cast it to `void*` or `const void*`. In particular, this forbids // formatting of `[const] volatile char*` printed as bool by iostreams. constexpr bool formattable_pointer = !std::is_same<arg_type, unformattable_pointer>::value; static_assert(formattable_pointer, "Formatting of non-void pointers is disallowed."); constexpr bool formattable = !std::is_same<arg_type, unformattable>::value; static_assert( formattable, "Cannot format an argument. To make type T formattable provide a " "formatter<T> specialization: https://fmt.dev/latest/api.html#udt"); return {arg_mapper<Context>().map(val)}; } template <typename Context, typename T> FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context> { auto arg = basic_format_arg<Context>(); arg.type_ = mapped_type_constant<T, Context>::value; arg.value_ = make_value<Context>(value); return arg; } // The DEPRECATED type template parameter is there to avoid an ODR violation // when using a fallback formatter in one translation unit and an implicit // conversion in another (not recommended). template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(IS_PACKED)> FMT_CONSTEXPR FMT_INLINE auto make_arg(T&& val) -> value<Context> { return make_value<Context>(val); } template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(!IS_PACKED)> FMT_CONSTEXPR inline auto make_arg(T&& value) -> basic_format_arg<Context> { return make_arg<Context>(value); } } // namespace detail FMT_BEGIN_EXPORT // Formatting context. template <typename OutputIt, typename Char> class basic_format_context { private: OutputIt out_; basic_format_args<basic_format_context> args_; detail::locale_ref loc_; public: using iterator = OutputIt; using format_arg = basic_format_arg<basic_format_context>; using format_args = basic_format_args<basic_format_context>; using parse_context_type = basic_format_parse_context<Char>; template <typename T> using formatter_type = formatter<T, Char>; /** The character type for the output. */ using char_type = Char; basic_format_context(basic_format_context&&) = default; basic_format_context(const basic_format_context&) = delete; void operator=(const basic_format_context&) = delete; /** Constructs a ``basic_format_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. */ constexpr basic_format_context(OutputIt out, format_args ctx_args, detail::locale_ref loc = {}) : out_(out), args_(ctx_args), loc_(loc) {} constexpr auto arg(int id) const -> format_arg { return args_.get(id); } FMT_CONSTEXPR auto arg(basic_string_view<Char> name) -> format_arg { return args_.get(name); } FMT_CONSTEXPR auto arg_id(basic_string_view<Char> name) -> int { return args_.get_id(name); } auto args() const -> const format_args& { return args_; } FMT_CONSTEXPR auto error_handler() -> detail::error_handler { return {}; } void on_error(const char* message) { error_handler().on_error(message); } // Returns an iterator to the beginning of the output range. FMT_CONSTEXPR auto out() -> iterator { return out_; } // Advances the begin iterator to ``it``. void advance_to(iterator it) { if (!detail::is_back_insert_iterator<iterator>()) out_ = it; } FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; } }; template <typename Char> using buffer_context = basic_format_context<detail::buffer_appender<Char>, Char>; using format_context = buffer_context<char>; template <typename T, typename Char = char> using is_formattable = bool_constant<!std::is_base_of< detail::unformattable, decltype(detail::arg_mapper<buffer_context<Char>>() .map(std::declval<T>()))>::value>; /** \rst An array of references to arguments. It can be implicitly converted into `~fmt::basic_format_args` for passing into type-erased formatting functions such as `~fmt::vformat`. \endrst */ template <typename Context, typename... Args> class format_arg_store #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround a GCC template argument substitution bug. : public basic_format_args<Context> #endif { private: static const size_t num_args = sizeof...(Args); static const size_t num_named_args = detail::count_named_args<Args...>(); static const bool is_packed = num_args <= detail::max_packed_args; using value_type = conditional_t<is_packed, detail::value<Context>, basic_format_arg<Context>>; detail::arg_data<value_type, typename Context::char_type, num_args, num_named_args> data_; friend class basic_format_args<Context>; static constexpr unsigned long long desc = (is_packed ? detail::encode_types<Context, Args...>() : detail::is_unpacked_bit | num_args) | (num_named_args != 0 ? static_cast<unsigned long long>(detail::has_named_args_bit) : 0); public: template <typename... T> FMT_CONSTEXPR FMT_INLINE format_arg_store(T&&... args) : #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 basic_format_args<Context>(*this), #endif data_{detail::make_arg< is_packed, Context, detail::mapped_type_constant<remove_cvref_t<T>, Context>::value>( FMT_FORWARD(args))...} { detail::init_named_args(data_.named_args(), 0, 0, args...); } }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. `Context` can be omitted in which case it defaults to `~fmt::context`. See `~fmt::arg` for lifetime considerations. \endrst */ template <typename Context = format_context, typename... T> constexpr auto make_format_args(T&&... args) -> format_arg_store<Context, remove_cvref_t<T>...> { return {FMT_FORWARD(args)...}; } /** \rst Returns a named argument to be used in a formatting function. It should only be used in a call to a formatting function or `dynamic_format_arg_store::push_back`. **Example**:: fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23)); \endrst */ template <typename Char, typename T> inline auto arg(const Char* name, const T& arg) -> detail::named_arg<Char, T> { static_assert(!detail::is_named_arg<T>(), "nested named arguments"); return {name, arg}; } FMT_END_EXPORT /** \rst A view of a collection of formatting arguments. To avoid lifetime issues it should only be used as a parameter type in type-erased functions such as ``vformat``:: void vlog(string_view format_str, format_args args); // OK format_args args = make_format_args(42); // Error: dangling reference \endrst */ template <typename Context> class basic_format_args { public: using size_type = int; using format_arg = basic_format_arg<Context>; private: // A descriptor that contains information about formatting arguments. // If the number of arguments is less or equal to max_packed_args then // argument types are passed in the descriptor. This reduces binary code size // per formatting function call. unsigned long long desc_; union { // If is_packed() returns true then argument values are stored in values_; // otherwise they are stored in args_. This is done to improve cache // locality and reduce compiled code size since storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const detail::value<Context>* values_; const format_arg* args_; }; constexpr auto is_packed() const -> bool { return (desc_ & detail::is_unpacked_bit) == 0; } auto has_named_args() const -> bool { return (desc_ & detail::has_named_args_bit) != 0; } FMT_CONSTEXPR auto type(int index) const -> detail::type { int shift = index * detail::packed_arg_bits; unsigned int mask = (1 << detail::packed_arg_bits) - 1; return static_cast<detail::type>((desc_ >> shift) & mask); } constexpr FMT_INLINE basic_format_args(unsigned long long desc, const detail::value<Context>* values) : desc_(desc), values_(values) {} constexpr basic_format_args(unsigned long long desc, const format_arg* args) : desc_(desc), args_(args) {} public: constexpr basic_format_args() : desc_(0), args_(nullptr) {} /** \rst Constructs a `basic_format_args` object from `~fmt::format_arg_store`. \endrst */ template <typename... Args> constexpr FMT_INLINE basic_format_args( const format_arg_store<Context, Args...>& store) : basic_format_args(format_arg_store<Context, Args...>::desc, store.data_.args()) {} /** \rst Constructs a `basic_format_args` object from `~fmt::dynamic_format_arg_store`. \endrst */ constexpr FMT_INLINE basic_format_args( const dynamic_format_arg_store<Context>& store) : basic_format_args(store.get_types(), store.data()) {} /** \rst Constructs a `basic_format_args` object from a dynamic set of arguments. \endrst */ constexpr basic_format_args(const format_arg* args, int count) : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count), args) {} /** Returns the argument with the specified id. */ FMT_CONSTEXPR auto get(int id) const -> format_arg { format_arg arg; if (!is_packed()) { if (id < max_size()) arg = args_[id]; return arg; } if (id >= detail::max_packed_args) return arg; arg.type_ = type(id); if (arg.type_ == detail::type::none_type) return arg; arg.value_ = values_[id]; return arg; } template <typename Char> auto get(basic_string_view<Char> name) const -> format_arg { int id = get_id(name); return id >= 0 ? get(id) : format_arg(); } template <typename Char> auto get_id(basic_string_view<Char> name) const -> int { if (!has_named_args()) return -1; const auto& named_args = (is_packed() ? values_[-1] : args_[-1].value_).named_args; for (size_t i = 0; i < named_args.size; ++i) { if (named_args.data[i].name == name) return named_args.data[i].id; } return -1; } auto max_size() const -> int { unsigned long long max_packed = detail::max_packed_args; return static_cast<int>(is_packed() ? max_packed : desc_ & ~detail::is_unpacked_bit); } }; /** An alias to ``basic_format_args<format_context>``. */ // A separate type would result in shorter symbols but break ABI compatibility // between clang and gcc on ARM (#1919). FMT_MODULE_EXPORT using format_args = basic_format_args<format_context>; // We cannot use enum classes as bit fields because of a gcc bug, so we put them // in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414). // Additionally, if an underlying type is specified, older gcc incorrectly warns // that the type is too small. Both bugs are fixed in gcc 9.3. #if FMT_GCC_VERSION && FMT_GCC_VERSION < 903 # define FMT_ENUM_UNDERLYING_TYPE(type) #else # define FMT_ENUM_UNDERLYING_TYPE(type) : type #endif namespace align { enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, left, right, center, numeric}; } using align_t = align::type; namespace sign { enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, minus, plus, space}; } using sign_t = sign::type; namespace detail { // Workaround an array initialization issue in gcc 4.8. template <typename Char> struct fill_t { private: enum { max_size = 4 }; Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)}; unsigned char size_ = 1; public: FMT_CONSTEXPR void operator=(basic_string_view<Char> s) { auto size = s.size(); FMT_ASSERT(size <= max_size, "invalid fill"); for (size_t i = 0; i < size; ++i) data_[i] = s[i]; size_ = static_cast<unsigned char>(size); } constexpr auto size() const -> size_t { return size_; } constexpr auto data() const -> const Char* { return data_; } FMT_CONSTEXPR auto operator[](size_t index) -> Char& { return data_[index]; } FMT_CONSTEXPR auto operator[](size_t index) const -> const Char& { return data_[index]; } }; } // namespace detail enum class presentation_type : unsigned char { none, dec, // 'd' oct, // 'o' hex_lower, // 'x' hex_upper, // 'X' bin_lower, // 'b' bin_upper, // 'B' hexfloat_lower, // 'a' hexfloat_upper, // 'A' exp_lower, // 'e' exp_upper, // 'E' fixed_lower, // 'f' fixed_upper, // 'F' general_lower, // 'g' general_upper, // 'G' chr, // 'c' string, // 's' pointer, // 'p' debug // '?' }; // Format specifiers for built-in and string types. template <typename Char = char> struct format_specs { int width; int precision; presentation_type type; align_t align : 4; sign_t sign : 3; bool alt : 1; // Alternate form ('#'). bool localized : 1; detail::fill_t<Char> fill; constexpr format_specs() : width(0), precision(-1), type(presentation_type::none), align(align::none), sign(sign::none), alt(false), localized(false) {} }; namespace detail { enum class arg_id_kind { none, index, name }; // An argument reference. template <typename Char> struct arg_ref { FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {} FMT_CONSTEXPR explicit arg_ref(int index) : kind(arg_id_kind::index), val(index) {} FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name) : kind(arg_id_kind::name), val(name) {} FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& { kind = arg_id_kind::index; val.index = idx; return *this; } arg_id_kind kind; union value { FMT_CONSTEXPR value(int idx = 0) : index(idx) {} FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {} int index; basic_string_view<Char> name; } val; }; // Format specifiers with width and precision resolved at formatting rather // than parsing time to allow reusing the same parsed specifiers with // different sets of arguments (precompilation of format strings). template <typename Char = char> struct dynamic_format_specs : format_specs<Char> { arg_ref<Char> width_ref; arg_ref<Char> precision_ref; }; // Converts a character to ASCII. Returns '\0' on conversion failure. template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)> constexpr auto to_ascii(Char c) -> char { return c <= 0xff ? static_cast<char>(c) : '\0'; } template <typename Char, FMT_ENABLE_IF(std::is_enum<Char>::value)> constexpr auto to_ascii(Char c) -> char { return c <= 0xff ? static_cast<char>(c) : '\0'; } // Returns the number of code units in a code point or 1 on error. template <typename Char> FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int { if (const_check(sizeof(Char) != 1)) return 1; auto c = static_cast<unsigned char>(*begin); return static_cast<int>((0x3a55000000000000ull >> (2 * (c >> 3))) & 0x3) + 1; } // Return the result via the out param to workaround gcc bug 77539. template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*> FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool { for (out = first; out != last; ++out) { if (*out == value) return true; } return false; } template <> inline auto find<false, char>(const char* first, const char* last, char value, const char*& out) -> bool { out = static_cast<const char*>( std::memchr(first, value, to_unsigned(last - first))); return out != nullptr; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template <typename Char> FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end, int error_value) noexcept -> int { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); unsigned value = 0, prev = 0; auto p = begin; do { prev = value; value = value * 10 + unsigned(*p - '0'); ++p; } while (p != end && '0' <= *p && *p <= '9'); auto num_digits = p - begin; begin = p; if (num_digits <= std::numeric_limits<int>::digits10) return static_cast<int>(value); // Check for overflow. const unsigned max = to_unsigned((std::numeric_limits<int>::max)()); return num_digits == std::numeric_limits<int>::digits10 + 1 && prev * 10ull + unsigned(p[-1] - '0') <= max ? static_cast<int>(value) : error_value; } FMT_CONSTEXPR inline auto parse_align(char c) -> align_t { switch (c) { case '<': return align::left; case '>': return align::right; case '^': return align::center; } return align::none; } template <typename Char> constexpr auto is_name_start(Char c) -> bool { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_'; } template <typename Char, typename Handler> FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end, Handler&& handler) -> const Char* { Char c = *begin; if (c >= '0' && c <= '9') { int index = 0; constexpr int max = (std::numeric_limits<int>::max)(); if (c != '0') index = parse_nonnegative_int(begin, end, max); else ++begin; if (begin == end || (*begin != '}' && *begin != ':')) throw_format_error("invalid format string"); else handler.on_index(index); return begin; } if (!is_name_start(c)) { throw_format_error("invalid format string"); return begin; } auto it = begin; do { ++it; } while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9'))); handler.on_name({begin, to_unsigned(it - begin)}); return it; } template <typename Char, typename Handler> FMT_CONSTEXPR FMT_INLINE auto parse_arg_id(const Char* begin, const Char* end, Handler&& handler) -> const Char* { FMT_ASSERT(begin != end, ""); Char c = *begin; if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler); handler.on_auto(); return begin; } template <typename Char> struct dynamic_spec_id_handler { basic_format_parse_context<Char>& ctx; arg_ref<Char>& ref; FMT_CONSTEXPR void on_auto() { int id = ctx.next_arg_id(); ref = arg_ref<Char>(id); ctx.check_dynamic_spec(id); } FMT_CONSTEXPR void on_index(int id) { ref = arg_ref<Char>(id); ctx.check_arg_id(id); ctx.check_dynamic_spec(id); } FMT_CONSTEXPR void on_name(basic_string_view<Char> id) { ref = arg_ref<Char>(id); ctx.check_arg_id(id); } }; // Parses [integer | "{" [arg_id] "}"]. template <typename Char> FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end, int& value, arg_ref<Char>& ref, basic_format_parse_context<Char>& ctx) -> const Char* { FMT_ASSERT(begin != end, ""); if ('0' <= *begin && *begin <= '9') { int val = parse_nonnegative_int(begin, end, -1); if (val != -1) value = val; else throw_format_error("number is too big"); } else if (*begin == '{') { ++begin; auto handler = dynamic_spec_id_handler<Char>{ctx, ref}; if (begin != end) begin = parse_arg_id(begin, end, handler); if (begin != end && *begin == '}') return ++begin; throw_format_error("invalid format string"); } return begin; } template <typename Char> FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end, int& value, arg_ref<Char>& ref, basic_format_parse_context<Char>& ctx) -> const Char* { ++begin; if (begin == end || *begin == '}') { throw_format_error("invalid precision"); return begin; } return parse_dynamic_spec(begin, end, value, ref, ctx); } enum class state { start, align, sign, hash, zero, width, precision, locale }; // Parses standard format specifiers. template <typename Char> FMT_CONSTEXPR FMT_INLINE auto parse_format_specs( const Char* begin, const Char* end, dynamic_format_specs<Char>& specs, basic_format_parse_context<Char>& ctx, type arg_type) -> const Char* { auto c = '\0'; if (end - begin > 1) { auto next = to_ascii(begin[1]); c = parse_align(next) == align::none ? to_ascii(*begin) : '\0'; } else { if (begin == end) return begin; c = to_ascii(*begin); } struct { state current_state = state::start; FMT_CONSTEXPR void operator()(state s, bool valid = true) { if (current_state >= s || !valid) throw_format_error("invalid format specifier"); current_state = s; } } enter_state; using pres = presentation_type; constexpr auto integral_set = sint_set | uint_set | bool_set | char_set; struct { const Char*& begin; dynamic_format_specs<Char>& specs; type arg_type; FMT_CONSTEXPR auto operator()(pres type, int set) -> const Char* { if (!in(arg_type, set)) throw_format_error("invalid format specifier"); specs.type = type; return begin + 1; } } parse_presentation_type{begin, specs, arg_type}; for (;;) { switch (c) { case '<': case '>': case '^': enter_state(state::align); specs.align = parse_align(c); ++begin; break; case '+': case '-': case ' ': enter_state(state::sign, in(arg_type, sint_set | float_set)); switch (c) { case '+': specs.sign = sign::plus; break; case '-': specs.sign = sign::minus; break; case ' ': specs.sign = sign::space; break; } ++begin; break; case '#': enter_state(state::hash, is_arithmetic_type(arg_type)); specs.alt = true; ++begin; break; case '0': enter_state(state::zero); if (!is_arithmetic_type(arg_type)) throw_format_error("format specifier requires numeric argument"); if (specs.align == align::none) { // Ignore 0 if align is specified for compatibility with std::format. specs.align = align::numeric; specs.fill[0] = Char('0'); } ++begin; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '{': enter_state(state::width); begin = parse_dynamic_spec(begin, end, specs.width, specs.width_ref, ctx); break; case '.': enter_state(state::precision, in(arg_type, float_set | string_set | cstring_set)); begin = parse_precision(begin, end, specs.precision, specs.precision_ref, ctx); break; case 'L': enter_state(state::locale, is_arithmetic_type(arg_type)); specs.localized = true; ++begin; break; case 'd': return parse_presentation_type(pres::dec, integral_set); case 'o': return parse_presentation_type(pres::oct, integral_set); case 'x': return parse_presentation_type(pres::hex_lower, integral_set); case 'X': return parse_presentation_type(pres::hex_upper, integral_set); case 'b': return parse_presentation_type(pres::bin_lower, integral_set); case 'B': return parse_presentation_type(pres::bin_upper, integral_set); case 'a': return parse_presentation_type(pres::hexfloat_lower, float_set); case 'A': return parse_presentation_type(pres::hexfloat_upper, float_set); case 'e': return parse_presentation_type(pres::exp_lower, float_set); case 'E': return parse_presentation_type(pres::exp_upper, float_set); case 'f': return parse_presentation_type(pres::fixed_lower, float_set); case 'F': return parse_presentation_type(pres::fixed_upper, float_set); case 'g': return parse_presentation_type(pres::general_lower, float_set); case 'G': return parse_presentation_type(pres::general_upper, float_set); case 'c': return parse_presentation_type(pres::chr, integral_set); case 's': return parse_presentation_type(pres::string, bool_set | string_set | cstring_set); case 'p': return parse_presentation_type(pres::pointer, pointer_set | cstring_set); case '?': return parse_presentation_type(pres::debug, char_set | string_set | cstring_set); case '}': return begin; default: { if (*begin == '}') return begin; // Parse fill and alignment. auto fill_end = begin + code_point_length(begin); if (end - fill_end <= 0) { throw_format_error("invalid format specifier"); return begin; } if (*begin == '{') { throw_format_error("invalid fill character '{'"); return begin; } auto align = parse_align(to_ascii(*fill_end)); enter_state(state::align, align != align::none); specs.fill = {begin, to_unsigned(fill_end - begin)}; specs.align = align; begin = fill_end + 1; } } if (begin == end) return begin; c = to_ascii(*begin); } } template <typename Char, typename Handler> FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end, Handler&& handler) -> const Char* { struct id_adapter { Handler& handler; int arg_id; FMT_CONSTEXPR void on_auto() { arg_id = handler.on_arg_id(); } FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void on_name(basic_string_view<Char> id) { arg_id = handler.on_arg_id(id); } }; ++begin; if (begin == end) return handler.on_error("invalid format string"), end; if (*begin == '}') { handler.on_replacement_field(handler.on_arg_id(), begin); } else if (*begin == '{') { handler.on_text(begin, begin + 1); } else { auto adapter = id_adapter{handler, 0}; begin = parse_arg_id(begin, end, adapter); Char c = begin != end ? *begin : Char(); if (c == '}') { handler.on_replacement_field(adapter.arg_id, begin); } else if (c == ':') { begin = handler.on_format_specs(adapter.arg_id, begin + 1, end); if (begin == end || *begin != '}') return handler.on_error("unknown format specifier"), end; } else { return handler.on_error("missing '}' in format string"), end; } } return begin + 1; } template <bool IS_CONSTEXPR, typename Char, typename Handler> FMT_CONSTEXPR FMT_INLINE void parse_format_string( basic_string_view<Char> format_str, Handler&& handler) { auto begin = format_str.data(); auto end = begin + format_str.size(); if (end - begin < 32) { // Use a simple loop instead of memchr for small strings. const Char* p = begin; while (p != end) { auto c = *p++; if (c == '{') { handler.on_text(begin, p - 1); begin = p = parse_replacement_field(p - 1, end, handler); } else if (c == '}') { if (p == end || *p != '}') return handler.on_error("unmatched '}' in format string"); handler.on_text(begin, p); begin = ++p; } } handler.on_text(begin, end); return; } struct writer { FMT_CONSTEXPR void operator()(const Char* from, const Char* to) { if (from == to) return; for (;;) { const Char* p = nullptr; if (!find<IS_CONSTEXPR>(from, to, Char('}'), p)) return handler_.on_text(from, to); ++p; if (p == to || *p != '}') return handler_.on_error("unmatched '}' in format string"); handler_.on_text(from, p); from = p + 1; } } Handler& handler_; } write = {handler}; while (begin != end) { // Doing two passes with memchr (one for '{' and another for '}') is up to // 2.5x faster than the naive one-pass implementation on big format strings. const Char* p = begin; if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, Char('{'), p)) return write(begin, end); write(begin, p); begin = parse_replacement_field(p, end, handler); } } template <typename T, bool = is_named_arg<T>::value> struct strip_named_arg { using type = T; }; template <typename T> struct strip_named_arg<T, true> { using type = remove_cvref_t<decltype(T::value)>; }; template <typename T, typename ParseContext> FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx) -> decltype(ctx.begin()) { using char_type = typename ParseContext::char_type; using context = buffer_context<char_type>; using mapped_type = conditional_t< mapped_type_constant<T, context>::value != type::custom_type, decltype(arg_mapper<context>().map(std::declval<const T&>())), typename strip_named_arg<T>::type>; return formatter<mapped_type, char_type>().parse(ctx); } // Checks char specs and returns true iff the presentation type is char-like. template <typename Char> FMT_CONSTEXPR auto check_char_specs(const format_specs<Char>& specs) -> bool { if (specs.type != presentation_type::none && specs.type != presentation_type::chr && specs.type != presentation_type::debug) { return false; } if (specs.align == align::numeric || specs.sign != sign::none || specs.alt) throw_format_error("invalid format specifier for char"); return true; } constexpr FMT_INLINE_VARIABLE int invalid_arg_index = -1; #if FMT_USE_NONTYPE_TEMPLATE_ARGS template <int N, typename T, typename... Args, typename Char> constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int { if constexpr (is_statically_named_arg<T>()) { if (name == T::name) return N; } if constexpr (sizeof...(Args) > 0) return get_arg_index_by_name<N + 1, Args...>(name); (void)name; // Workaround an MSVC bug about "unused" parameter. return invalid_arg_index; } #endif template <typename... Args, typename Char> FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view<Char> name) -> int { #if FMT_USE_NONTYPE_TEMPLATE_ARGS if constexpr (sizeof...(Args) > 0) return get_arg_index_by_name<0, Args...>(name); #endif (void)name; return invalid_arg_index; } template <typename Char, typename... Args> class format_string_checker { private: using parse_context_type = compile_parse_context<Char>; static constexpr int num_args = sizeof...(Args); // Format specifier parsing function. // In the future basic_format_parse_context will replace compile_parse_context // here and will use is_constant_evaluated and downcasting to access the data // needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1. using parse_func = const Char* (*)(parse_context_type&); parse_context_type context_; parse_func parse_funcs_[num_args > 0 ? static_cast<size_t>(num_args) : 1]; type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1]; public: explicit FMT_CONSTEXPR format_string_checker(basic_string_view<Char> fmt) : context_(fmt, num_args, types_), parse_funcs_{&parse_format_specs<Args, parse_context_type>...}, types_{mapped_type_constant<Args, buffer_context<Char>>::value...} {} FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); } FMT_CONSTEXPR auto on_arg_id(int id) -> int { return context_.check_arg_id(id), id; } FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int { #if FMT_USE_NONTYPE_TEMPLATE_ARGS auto index = get_arg_index_by_name<Args...>(id); if (index == invalid_arg_index) on_error("named argument is not found"); return index; #else (void)id; on_error("compile-time checks for named arguments require C++20 support"); return 0; #endif } FMT_CONSTEXPR void on_replacement_field(int, const Char*) {} FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*) -> const Char* { context_.advance_to(begin); // id >= 0 check is a workaround for gcc 10 bug (#2065). return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin; } FMT_CONSTEXPR void on_error(const char* message) { throw_format_error(message); } }; // Reports a compile-time error if S is not a valid format string. template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)> FMT_INLINE void check_format_string(const S&) { #ifdef FMT_ENFORCE_COMPILE_STRING static_assert(is_compile_string<S>::value, "FMT_ENFORCE_COMPILE_STRING requires all format strings to use " "FMT_STRING."); #endif } template <typename... Args, typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> void check_format_string(S format_str) { using char_t = typename S::char_type; FMT_CONSTEXPR auto s = basic_string_view<char_t>(format_str); using checker = format_string_checker<char_t, remove_cvref_t<Args>...>; FMT_CONSTEXPR bool error = (parse_format_string<true>(s, checker(s)), true); ignore_unused(error); } template <typename Char = char> struct vformat_args { using type = basic_format_args< basic_format_context<std::back_insert_iterator<buffer<Char>>, Char>>; }; template <> struct vformat_args<char> { using type = format_args; }; // Use vformat_args and avoid type_identity to keep symbols short. template <typename Char> void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt, typename vformat_args<Char>::type args, locale_ref loc = {}); FMT_API void vprint_mojibake(std::FILE*, string_view, format_args); #ifndef _WIN32 inline void vprint_mojibake(std::FILE*, string_view, format_args) {} #endif } // namespace detail FMT_BEGIN_EXPORT // A formatter specialization for natively supported types. template <typename T, typename Char> struct formatter<T, Char, enable_if_t<detail::type_constant<T, Char>::value != detail::type::custom_type>> { private: detail::dynamic_format_specs<Char> specs_; public: template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* { auto type = detail::type_constant<T, Char>::value; auto end = detail::parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, type); if (type == detail::type::char_type) detail::check_char_specs(specs_); return end; } template <detail::type U = detail::type_constant<T, Char>::value, FMT_ENABLE_IF(U == detail::type::string_type || U == detail::type::cstring_type || U == detail::type::char_type)> FMT_CONSTEXPR void set_debug_format(bool set = true) { specs_.type = set ? presentation_type::debug : presentation_type::none; } template <typename FormatContext> FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const -> decltype(ctx.out()); }; #define FMT_FORMAT_AS(Type, Base) \ template <typename Char> \ struct formatter<Type, Char> : formatter<Base, Char> { \ template <typename FormatContext> \ auto format(const Type& val, FormatContext& ctx) const \ -> decltype(ctx.out()) { \ return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \ } \ } FMT_FORMAT_AS(signed char, int); FMT_FORMAT_AS(unsigned char, unsigned); FMT_FORMAT_AS(short, int); FMT_FORMAT_AS(unsigned short, unsigned); FMT_FORMAT_AS(long, long long); FMT_FORMAT_AS(unsigned long, unsigned long long); FMT_FORMAT_AS(Char*, const Char*); FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>); FMT_FORMAT_AS(std::nullptr_t, const void*); FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>); template <typename Char = char> struct runtime_format_string { basic_string_view<Char> str; }; /** A compile-time format string. */ template <typename Char, typename... Args> class basic_format_string { private: basic_string_view<Char> str_; public: template <typename S, FMT_ENABLE_IF( std::is_convertible<const S&, basic_string_view<Char>>::value)> FMT_CONSTEVAL FMT_INLINE basic_format_string(const S& s) : str_(s) { static_assert( detail::count< (std::is_base_of<detail::view, remove_reference_t<Args>>::value && std::is_reference<Args>::value)...>() == 0, "passing views as lvalues is disallowed"); #ifdef FMT_HAS_CONSTEVAL if constexpr (detail::count_named_args<Args...>() == detail::count_statically_named_args<Args...>()) { using checker = detail::format_string_checker<Char, remove_cvref_t<Args>...>; detail::parse_format_string<true>(str_, checker(s)); } #else detail::check_format_string<Args...>(s); #endif } basic_format_string(runtime_format_string<Char> fmt) : str_(fmt.str) {} FMT_INLINE operator basic_string_view<Char>() const { return str_; } FMT_INLINE auto get() const -> basic_string_view<Char> { return str_; } }; #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround broken conversion on older gcc. template <typename...> using format_string = string_view; inline auto runtime(string_view s) -> string_view { return s; } #else template <typename... Args> using format_string = basic_format_string<char, type_identity_t<Args>...>; /** \rst Creates a runtime format string. **Example**:: // Check format string at runtime instead of compile-time. fmt::print(fmt::runtime("{:d}"), "I am not a number"); \endrst */ inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; } #endif FMT_API auto vformat(string_view fmt, format_args args) -> std::string; /** \rst Formats ``args`` according to specifications in ``fmt`` and returns the result as a string. **Example**:: #include <fmt/core.h> std::string message = fmt::format("The answer is {}.", 42); \endrst */ template <typename... T> FMT_NODISCARD FMT_INLINE auto format(format_string<T...> fmt, T&&... args) -> std::string { return vformat(fmt, fmt::make_format_args(args...)); } /** Formats a string and writes the output to ``out``. */ template <typename OutputIt, FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)> auto vformat_to(OutputIt out, string_view fmt, format_args args) -> OutputIt { auto&& buf = detail::get_buffer<char>(out); detail::vformat_to(buf, fmt, args, {}); return detail::get_iterator(buf, out); } /** \rst Formats ``args`` according to specifications in ``fmt``, writes the result to the output iterator ``out`` and returns the iterator past the end of the output range. `format_to` does not append a terminating null character. **Example**:: auto out = std::vector<char>(); fmt::format_to(std::back_inserter(out), "{}", 42); \endrst */ template <typename OutputIt, typename... T, FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)> FMT_INLINE auto format_to(OutputIt out, format_string<T...> fmt, T&&... args) -> OutputIt { return vformat_to(out, fmt, fmt::make_format_args(args...)); } template <typename OutputIt> struct format_to_n_result { /** Iterator past the end of the output range. */ OutputIt out; /** Total (not truncated) output size. */ size_t size; }; template <typename OutputIt, typename... T, FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)> auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args) -> format_to_n_result<OutputIt> { using traits = detail::fixed_buffer_traits; auto buf = detail::iterator_buffer<OutputIt, char, traits>(out, n); detail::vformat_to(buf, fmt, args, {}); return {buf.out(), buf.count()}; } /** \rst Formats ``args`` according to specifications in ``fmt``, writes up to ``n`` characters of the result to the output iterator ``out`` and returns the total (not truncated) output size and the iterator past the end of the output range. `format_to_n` does not append a terminating null character. \endrst */ template <typename OutputIt, typename... T, FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)> FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt, T&&... args) -> format_to_n_result<OutputIt> { return vformat_to_n(out, n, fmt, fmt::make_format_args(args...)); } /** Returns the number of chars in the output of ``format(fmt, args...)``. */ template <typename... T> FMT_NODISCARD FMT_INLINE auto formatted_size(format_string<T...> fmt, T&&... args) -> size_t { auto buf = detail::counting_buffer<>(); detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...), {}); return buf.count(); } FMT_API void vprint(string_view fmt, format_args args); FMT_API void vprint(std::FILE* f, string_view fmt, format_args args); /** \rst Formats ``args`` according to specifications in ``fmt`` and writes the output to ``stdout``. **Example**:: fmt::print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template <typename... T> FMT_INLINE void print(format_string<T...> fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); return detail::is_utf8() ? vprint(fmt, vargs) : detail::vprint_mojibake(stdout, fmt, vargs); } /** \rst Formats ``args`` according to specifications in ``fmt`` and writes the output to the file ``f``. **Example**:: fmt::print(stderr, "Don't {}!", "panic"); \endrst */ template <typename... T> FMT_INLINE void print(std::FILE* f, format_string<T...> fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); return detail::is_utf8() ? vprint(f, fmt, vargs) : detail::vprint_mojibake(f, fmt, vargs); } /** Formats ``args`` according to specifications in ``fmt`` and writes the output to the file ``f`` followed by a newline. */ template <typename... T> FMT_INLINE void println(std::FILE* f, format_string<T...> fmt, T&&... args) { return fmt::print(f, "{}\n", fmt::format(fmt, std::forward<T>(args)...)); } /** Formats ``args`` according to specifications in ``fmt`` and writes the output to ``stdout`` followed by a newline. */ template <typename... T> FMT_INLINE void println(format_string<T...> fmt, T&&... args) { return fmt::println(stdout, fmt, std::forward<T>(args)...); } FMT_END_EXPORT FMT_GCC_PRAGMA("GCC pop_options") FMT_END_NAMESPACE #ifdef FMT_HEADER_ONLY # include "format.h" #endif #endif // FMT_CORE_H_