osb/source/game/StarPlatformerAStar.cpp
Kai Blaschke 431a9c00a5
Fixed a huge amount of Clang warnings
On Linux and macOS, using Clang to compile OpenStarbound produces about 400 MB worth of warnings during the build, making the compiler output unreadable and slowing the build down considerably.

99% of the warnings were unqualified uses of std::move and std::forward, which are now all properly qualified.

Fixed a few other minor warnings about non-virtual destructors and some uses of std::move preventing copy elision on temporary objects.

Most remaining warnings are now unused parameters.
2024-02-19 16:55:19 +01:00

541 lines
21 KiB
C++

#include "StarLogging.hpp"
#include "StarRandom.hpp"
#include "StarPlatformerAStar.hpp"
#include "StarWorld.hpp"
#include "StarLiquidTypes.hpp"
#include "StarJsonExtra.hpp"
namespace Star {
namespace PlatformerAStar {
// The desired spacing between nodes:
float const NodeGranularity = 1.f;
float const SimulateArcGranularity = 0.5f;
float const DefaultMaxDistance = 50.0f;
float const DefaultSmallJumpMultiplier = 0.75f;
float const DefaultJumpDropXMultiplier = 0.125f;
float const DefaultSwimCost = 40.0f;
float const DefaultJumpCost = 3.0f;
float const DefaultLiquidJumpCost = 10.0f;
float const DefaultDropCost = 3.0f;
float const DefaultMaxLandingVelocity = -5.0f;
// Bounding boxes are shrunk slightly to work around floating point rounding
// errors.
float const BoundBoxRoundingErrorScaling = 0.99f;
CollisionSet const CollisionSolid{CollisionKind::Null, CollisionKind::Slippery, CollisionKind::Block, CollisionKind::Slippery};
CollisionSet const CollisionFloorOnly{CollisionKind::Null, CollisionKind::Block, CollisionKind::Slippery, CollisionKind::Platform};
CollisionSet const CollisionDynamic{CollisionKind::Dynamic};
CollisionSet const CollisionAny{CollisionKind::Null,
CollisionKind::Platform,
CollisionKind::Dynamic,
CollisionKind::Slippery,
CollisionKind::Block};
PathFinder::PathFinder(World* world,
Vec2F searchFrom,
Vec2F searchTo,
ActorMovementParameters movementParameters,
Parameters searchParameters)
: m_world(world),
m_searchFrom(searchFrom),
m_searchTo(searchTo),
m_movementParams(std::move(movementParameters)),
m_searchParams(std::move(searchParameters)) {
initAStar();
}
PathFinder::PathFinder(PathFinder const& rhs) {
operator=(rhs);
}
PathFinder& PathFinder::operator=(PathFinder const& rhs) {
m_world = rhs.m_world;
m_searchFrom = rhs.m_searchFrom;
m_searchTo = rhs.m_searchTo;
m_movementParams = rhs.m_movementParams;
m_searchParams = rhs.m_searchParams;
initAStar();
return *this;
}
Maybe<bool> PathFinder::explore(Maybe<unsigned> maxExploreNodes) {
return m_astar->explore(maxExploreNodes);
}
Maybe<Path> const& PathFinder::result() const {
return m_astar->result();
}
void PathFinder::initAStar() {
auto heuristicCostFn = [this](Node const& fromNode, Node const& toNode) -> float {
return heuristicCost(fromNode.position, toNode.position);
};
auto goalReachedFn = [this](Node const& node) -> bool {
if (m_searchParams.mustEndOnGround && (!onGround(node.position) || node.velocity.isValid()))
return false;
return distance(node.position, m_searchTo) < NodeGranularity;
};
auto neighborsFn = [this](Node const& node, List<Edge>& result) {
auto neighborFilter = [this](Edge const& edge) -> bool {
return distance(edge.source.position, m_searchFrom) <= m_searchParams.maxDistance.value(DefaultMaxDistance);
};
neighbors(node, result);
result.filter(neighborFilter);
};
auto validateEndFn = [this](Edge const& edge) -> bool {
if (!m_searchParams.mustEndOnGround)
return true;
return onGround(edge.target.position) && edge.action != Action::Jump;
};
Vec2F roundedFrom = roundToNode(m_searchFrom);
Vec2F roundedTo = roundToNode(m_searchTo);
m_astar = AStar::Search<Edge, Node>(heuristicCostFn,
neighborsFn,
goalReachedFn,
m_searchParams.returnBest,
{validateEndFn},
m_searchParams.maxFScore,
m_searchParams.maxNodesToSearch);
m_astar->start(Node{roundedFrom, {}}, Node{roundedTo, {}});
}
float PathFinder::heuristicCost(Vec2F const& fromPosition, Vec2F const& toPosition) const {
// This function is used to estimate the cost of travel between two nodes.
// Underestimating the actual cost results in A* giving the optimal path.
// Overestimating results in A* finding a non-optimal path, but terminating
// more quickly when there is a route to the target.
// We don't really care all that much about getting the optimal path as long
// as we get one that looks feasible, so we deliberately overestimate here.
Vec2F diff = m_world->geometry().diff(fromPosition, toPosition);
// Manhattan distance * 2:
return 2.0f * (abs(diff[0]) + abs(diff[1]));
}
Edge PathFinder::defaultCostEdge(Action action, Node const& source, Node const& target) const {
return Edge{distance(source.position, target.position), action, Vec2F(0, 0), source, target};
}
void PathFinder::neighbors(Node const& node, List<Edge>& neighbors) const {
if (node.velocity.isValid()) {
// Follow the current trajectory. Most of the time, this will only produce
// one neighbor to avoid massive search space explosion, however one
// change of X velocity is allowed at the peak of a jump.
getArcNeighbors(node, neighbors);
} else if (inLiquid(node.position)) {
getSwimmingNeighbors(node, neighbors);
} else if (acceleration(node.position)[1] == 0.0f) {
getFlyingNeighbors(node, neighbors);
} else if (onGround(node.position)) {
getWalkingNeighbors(node, neighbors);
if (!onSolidGround(node.position)) {
// Add a node for dropping through a platform.
// When that node is explored, if it's not onGround, its neighbors will
// be falling to the ground.
getDropNeighbors(node, neighbors);
}
getJumpingNeighbors(node, neighbors);
} else {
// We're in the air, and can only fall now
getFallingNeighbors(node, neighbors);
}
}
void PathFinder::getDropNeighbors(Node const& node, List<Edge>& neighbors) const {
auto dropPosition = node.position + Vec2F(0, -1);
// The physics of platforms don't allow us to drop through platforms resting
// directly on solid surfaces. So if there is solid ground below the
// platform, don't allow dropping through the platform:
if (!onSolidGround(dropPosition)) {
float dropCost = m_searchParams.dropCost.value(DefaultDropCost);
float acc = acceleration(node.position)[1];
float dropSpeed = acc * sqrt(2.0 / abs(acc));
neighbors.append(Edge{dropCost, Action::Drop, Vec2F(0, 0), node, Node{dropPosition, Vec2F(0, dropSpeed)}});
}
}
void PathFinder::getWalkingNeighborsInDirection(Node const& node, List<Edge>& neighbors, float direction) const {
auto addNode = [this, &node, &neighbors](Node const& target) {
neighbors.append(defaultCostEdge(Action::Walk, node, target));
};
Vec2F forward = node.position + Vec2F(direction, 0);
Vec2F forwardAndUp = node.position + Vec2F(direction, 1);
Vec2F forwardAndDown = node.position + Vec2F(direction, -1);
RectF bounds = boundBox(node.position);
bool slopeDown = false;
bool slopeUp = false;
Vec2F forwardGroundPos = direction > 0 ? Vec2F(bounds.xMax(), bounds.yMin()) : Vec2F(bounds.xMin(), bounds.yMin());
Vec2F backGroundPos = direction < 0 ? Vec2F(bounds.xMax(), bounds.yMin()) : Vec2F(bounds.xMin(), bounds.yMin());
m_world->forEachCollisionBlock(groundCollisionRect(node.position, BoundBoxKind::Full).padded(1), [&](CollisionBlock const& block) {
if (slopeUp || slopeDown) return;
for (size_t i = 0; i < block.poly.sides(); ++i) {
auto side = block.poly.side(i);
auto sideDir = side.direction();
auto lower = side.min()[1] < side.max()[1] ? side.min() : side.max();
auto upper = side.min()[1] > side.max()[1] ? side.min() : side.max();
if (sideDir[0] != 0 && sideDir[1] != 0 && (lower[1] == round(forwardGroundPos[1]) || upper[1] == round(forwardGroundPos[1]))) {
float yDir = (sideDir[1] / sideDir[0]) * direction;
if (abs(m_world->geometry().diff(forwardGroundPos, lower)[0]) < 0.5 && yDir > 0)
slopeUp = true;
else if (abs(m_world->geometry().diff(backGroundPos, upper)[0]) < 0.5 && yDir < 0)
slopeDown = true;
if (slopeUp || slopeDown) break;
}
}
});
Maybe<float> walkSpeed = m_movementParams.walkSpeed;
Maybe<float> runSpeed = m_movementParams.runSpeed;
// Check if it's possible to walk up a block like a ramp first
if (slopeUp && onGround(forwardAndUp) && validPosition(forwardAndUp)) {
// Walk up a slope
addNode(Node{forwardAndUp, {}});
} else if (validPosition(forward) && onGround(forward)) {
// Walk along a flat plane
addNode(Node{forward, {}});
} else if (slopeDown && validPosition(forward) && validPosition(forwardAndDown) && onGround(forwardAndDown)) {
// Walk down a slope
addNode(Node{forwardAndDown, {}});
} else if (validPosition(forward)) {
// Fall off a ledge
bounds = m_movementParams.standingPoly->boundBox();
float back = direction > 0 ? bounds.xMin() : bounds.xMax();
forward[0] -= (1 - fmod(abs(back), 1.0f)) * direction;
if (walkSpeed.isValid())
addNode(Node{forward, Vec2F{copysign(*walkSpeed, direction), 0.0f}});
if (runSpeed.isValid())
addNode(Node{forward, Vec2F{copysign(*runSpeed, direction), 0.0f}});
}
}
void PathFinder::getWalkingNeighbors(Node const& node, List<Edge>& neighbors) const {
getWalkingNeighborsInDirection(node, neighbors, NodeGranularity);
getWalkingNeighborsInDirection(node, neighbors, -NodeGranularity);
}
void PathFinder::getFallingNeighbors(Node const& node, List<Edge>& neighbors) const {
forEachArcNeighbor(node, 0.0f, [this, &node, &neighbors](Node const& target, bool landed) {
neighbors.append(defaultCostEdge(Action::Arc, node, target));
if (landed) {
neighbors.append(defaultCostEdge(Action::Land, target, Node{target.position, {}}));
}
});
}
void PathFinder::getJumpingNeighbors(Node const& node, List<Edge>& neighbors) const {
if (Maybe<float> jumpSpeed = m_movementParams.airJumpProfile.jumpSpeed) {
float jumpCost = m_searchParams.jumpCost.value(DefaultJumpCost);
if (inLiquid(node.position))
jumpCost = m_searchParams.liquidJumpCost.value(DefaultLiquidJumpCost);
auto addVel = [jumpCost, &node, &neighbors](Vec2F const& vel) {
neighbors.append(Edge{jumpCost, Action::Jump, vel, node, node.withVelocity(vel)});
};
forEachArcVelocity(*jumpSpeed, addVel);
forEachArcVelocity(*jumpSpeed * m_searchParams.smallJumpMultiplier.value(DefaultSmallJumpMultiplier), addVel);
}
}
void PathFinder::getSwimmingNeighbors(Node const& node, List<Edge>& neighbors) const {
// TODO avoid damaging liquids, e.g. lava
// We assume when we're swimming we can move freely against gravity
getFlyingNeighbors(node, neighbors);
// Also allow jumping out of the water if we're at the surface:
RectF box = boundBox(node.position);
if (acceleration(node.position)[1] != 0.0f && m_world->liquidLevel(box).level < 1.0f)
getJumpingNeighbors(node, neighbors);
neighbors.filter([this](Edge& edge) -> bool {
return inLiquid(edge.target.position);
});
neighbors.transform([this](Edge& edge) -> Edge& {
if (edge.action == Action::Fly)
edge.action = Action::Swim;
edge.cost *= m_searchParams.swimCost.value(DefaultSwimCost);
return edge;
});
}
void PathFinder::getFlyingNeighbors(Node const& node, List<Edge>& neighbors) const {
auto addNode = [this, &node, &neighbors](
Node const& target) { neighbors.append(defaultCostEdge(Action::Fly, node, target)); };
Vec2F roundedPosition = roundToNode(node.position);
for (int dx = -1; dx < 2; ++dx) {
for (int dy = -1; dy < 2; ++dy) {
Vec2F newPosition = roundedPosition + Vec2F(dx, dy) * NodeGranularity;
if (validPosition(newPosition)) {
addNode(Node{newPosition, {}});
}
}
}
}
void PathFinder::getArcNeighbors(Node const& node, List<Edge>& neighbors) const {
auto addNode = [this, &node, &neighbors](Node const& target, bool landed) {
neighbors.append(defaultCostEdge(Action::Arc, node, target));
if (landed) {
neighbors.append(defaultCostEdge(Action::Land, target, Node{target.position, {}}));
}
};
simulateArc(node, addNode);
}
void PathFinder::forEachArcVelocity(float yVelocity, function<void(Vec2F)> func) const {
Maybe<float> walkSpeed = m_movementParams.walkSpeed;
Maybe<float> runSpeed = m_movementParams.runSpeed;
func(Vec2F(0, yVelocity));
if (m_searchParams.enableWalkSpeedJumps && walkSpeed.isValid()) {
func(Vec2F(*walkSpeed, yVelocity));
func(Vec2F(-*walkSpeed, yVelocity));
}
if (runSpeed.isValid()) {
func(Vec2F(*runSpeed, yVelocity));
func(Vec2F(-*runSpeed, yVelocity));
}
}
void PathFinder::forEachArcNeighbor(Node const& node, float yVelocity, function<void(Node, bool)> func) const {
Vec2F position = roundToNode(node.position);
forEachArcVelocity(yVelocity,
[this, &position, &func](Vec2F const& vel) {
simulateArc(Node{position, vel}, func);
});
}
Vec2F PathFinder::acceleration(Vec2F pos) const {
auto const& parameters = m_movementParams;
float gravity = m_world->gravity(pos) * parameters.gravityMultiplier.value(1.0f);
if (!parameters.gravityEnabled.value(true) || parameters.mass.value(0.0f) == 0.0f)
gravity = 0.0f;
float buoyancy = parameters.airBuoyancy.value(0.0f);
return Vec2F(0, -gravity * (1.0f - buoyancy));
}
Vec2F PathFinder::simulateArcCollision(Vec2F position, Vec2F velocity, float dt, bool& collidedX, bool& collidedY) const {
// Returns the new position and whether a collision in the Y axis occurred.
// We avoid actual collision detection / resolution as that would make
// pathfinding very expensive.
Vec2F newPosition = position + velocity * dt;
if (validPosition(newPosition)) {
collidedX = collidedY = false;
return newPosition;
} else {
collidedX = collidedY = true;
if (validPosition(Vec2F(newPosition[0], position[1]))) {
collidedX = false;
position[0] = newPosition[0];
} else if (validPosition(Vec2F(position[0], newPosition[1]), BoundBoxKind::Stand)) {
collidedY = false;
position[1] = newPosition[1];
}
}
return position;
}
void PathFinder::simulateArc(Node const& node, function<void(Node, bool)> func) const {
Vec2F position = node.position;
Vec2F velocity = *node.velocity;
bool jumping = velocity[1] > 0.0f;
float maxLandingVelocity = m_searchParams.maxLandingVelocity.value(DefaultMaxLandingVelocity);
Vec2F acc = acceleration(position);
if (acc[1] == 0.0f)
return;
// Simulate until we're roughly NodeGranularity distance from the previous
// node
Vec2F start = roundToNode(node.position);
Vec2F rounded = start;
while (rounded == start) {
float speed = velocity.magnitude();
float dt = fmin(0.2f, speed != 0.0f ? SimulateArcGranularity / speed : sqrt(SimulateArcGranularity * 2.0 * abs(acc[1])));
bool collidedX = false, collidedY = false;
position = simulateArcCollision(position, velocity, dt, collidedX, collidedY);
rounded = roundToNode(position);
if (collidedY) {
// We've either landed or hit our head on the ceiling
if (!jumping) {
// Landed
if (velocity[1] < maxLandingVelocity)
func(Node{rounded, velocity}, true);
return;
} else if (onGround(rounded, BoundBoxKind::Stand)) {
// Simultaneously hit head and landed -- this is a gap we can *just*
// fit
// through. No checking of the maxLandingVelocity, since the tiles'
// polygons are rounded, making this an easier target to hit than it
// seems.
func(Node{rounded, velocity}, true);
return;
}
// Hit ceiling. Remove y velocity
velocity[1] = 0.0f;
} else if (collidedX) {
// Hit a wall, just fall down
velocity[0] = 0.0f;
if (jumping) {
velocity[1] = 0.0f;
jumping = false;
}
}
velocity += acc * dt;
if (jumping && velocity[1] <= 0.0f) {
// We've reached a peak in the jump and the entity can now choose to
// change direction.
Maybe<float> runSpeed = m_movementParams.runSpeed;
Maybe<float> walkSpeed = m_movementParams.walkSpeed;
float crawlMultiplier = m_searchParams.jumpDropXMultiplier.value(DefaultJumpDropXMultiplier);
if ((*node.velocity)[0] != 0.0f || m_searchParams.enableVerticalJumpAirControl) {
if (runSpeed.isValid())
func(Node{position, Vec2F{copysign(*runSpeed, velocity[0]), 0.0f}}, false);
if (m_searchParams.enableWalkSpeedJumps && walkSpeed.isValid()) {
func(Node{position, Vec2F{copysign(*walkSpeed, velocity[0]), 0.0f}}, false);
func(Node{position, Vec2F{copysign(*walkSpeed * crawlMultiplier, velocity[0]), 0.0f}}, false);
}
}
// Only fall straight down if we were going straight up originally.
// Going from an arc to falling straight down looks unnatural.
if ((*node.velocity)[0] == 0.0f) {
func(Node{position, Vec2F(0.0f, 0.0f)}, false);
}
return;
}
}
if (!jumping) {
if (velocity[1] < maxLandingVelocity) {
if (onGround(rounded, BoundBoxKind::Stand) || inLiquid(rounded)) {
// Collision with platform
func(Node{rounded, velocity}, true);
return;
}
}
}
starAssert(velocity[1] != 0.0f);
func(Node{position, velocity}, false);
return;
}
bool PathFinder::validPosition(Vec2F pos, BoundBoxKind boundKind) const {
return !m_world->rectTileCollision(RectI::integral(boundBox(pos, boundKind)), CollisionSolid);
}
bool PathFinder::onGround(Vec2F pos, BoundBoxKind boundKind) const {
auto groundRect = groundCollisionRect(pos, boundKind);
// Check there is something under the feet.
// We allow walking over the tops of objects (e.g. trapdoors) without being
// able to float inside objects.
if (m_world->rectTileCollision(RectI::integral(boundBox(pos, boundKind)), CollisionDynamic))
// We're inside an object. Don't collide with object directly below our
// feet:
return m_world->rectTileCollision(groundRect, CollisionFloorOnly);
// Not inside an object, allow colliding with objects below our feet:
// We need to be for sure above platforms, but can be up to a full tile
// below the top of solid blocks because rounded collision polys
return m_world->rectTileCollision(groundRect, CollisionAny) || m_world->rectTileCollision(groundRect.translated(Vec2I(0, 1)), CollisionSolid);
}
bool PathFinder::onSolidGround(Vec2F pos) const {
return m_world->rectTileCollision(groundCollisionRect(pos, BoundBoxKind::Drop), CollisionSolid);
}
bool PathFinder::inLiquid(Vec2F pos) const {
RectF box = boundBox(pos);
return m_world->liquidLevel(box).level >= m_movementParams.minimumLiquidPercentage.value(0.5f);
}
RectF PathFinder::boundBox(Vec2F pos, BoundBoxKind boundKind) const {
RectF boundBox;
if (boundKind == BoundBoxKind::Drop && m_searchParams.droppingBoundBox) {
boundBox = *m_searchParams.droppingBoundBox;
} else if (boundKind == BoundBoxKind::Stand && m_searchParams.standingBoundBox) {
boundBox = *m_searchParams.standingBoundBox;
} else if (m_searchParams.boundBox.isValid()) {
boundBox = *m_searchParams.boundBox;
} else {
boundBox = m_movementParams.standingPoly->boundBox();
}
boundBox.scale(BoundBoxRoundingErrorScaling);
boundBox.translate(pos);
return boundBox;
}
RectI PathFinder::groundCollisionRect(Vec2F pos, BoundBoxKind boundKind) const {
RectI bounds = RectI::integral(boundBox(pos, boundKind));
Vec2I min = Vec2I(bounds.xMin(), bounds.yMin() - 1);
Vec2I max = Vec2I(bounds.xMax(), bounds.yMin());
// Return a 1-tile-thick rectangle below the 'feet' of the entity
return RectI(min, max);
}
Vec2I PathFinder::groundNodePosition(Vec2F pos) const {
RectI bounds = RectI::integral(boundBox(pos));
return Vec2I(floor(pos[0]), bounds.yMin() - 1);
}
Vec2F PathFinder::roundToNode(Vec2F pos) const {
// Round pos to the nearest node.
// Work out the distance from the entity's origin to the bottom of its
// feet. We round Y relative to this so that we ensure we're able to
// generate
// paths through gaps that are *just* tall enough for the entity to fit
// through.
RectF boundBox;
if (m_searchParams.boundBox.isValid()) {
boundBox = *m_searchParams.boundBox;
} else {
boundBox = m_movementParams.standingPoly->boundBox();
}
float bottom = boundBox.yMin();
float x = round(pos[0] / NodeGranularity) * NodeGranularity;
float y = round((pos[1] + bottom) / NodeGranularity) * NodeGranularity - bottom;
return {x, y};
}
float PathFinder::distance(Vec2F a, Vec2F b) const {
return m_world->geometry().diff(a, b).magnitude();
}
}
}