431a9c00a5
On Linux and macOS, using Clang to compile OpenStarbound produces about 400 MB worth of warnings during the build, making the compiler output unreadable and slowing the build down considerably. 99% of the warnings were unqualified uses of std::move and std::forward, which are now all properly qualified. Fixed a few other minor warnings about non-virtual destructors and some uses of std::move preventing copy elision on temporary objects. Most remaining warnings are now unused parameters.
751 lines
21 KiB
C++
751 lines
21 KiB
C++
#ifndef STAR_POLY_HPP
|
|
#define STAR_POLY_HPP
|
|
|
|
#include <numeric>
|
|
|
|
#include "StarRect.hpp"
|
|
|
|
namespace Star {
|
|
|
|
template <typename DataType>
|
|
class Polygon {
|
|
public:
|
|
typedef Vector<DataType, 2> Vertex;
|
|
typedef Star::Line<DataType, 2> Line;
|
|
typedef Star::Box<DataType, 2> Rect;
|
|
|
|
struct IntersectResult {
|
|
// Whether or not the two objects intersect
|
|
bool intersects;
|
|
// How much *this* poly must be moved in order to make them not intersect
|
|
// anymore
|
|
Vertex overlap;
|
|
};
|
|
|
|
struct LineIntersectResult {
|
|
// Point of intersection
|
|
Vertex point;
|
|
// t value at the point of intersection of the line that was checked
|
|
DataType along;
|
|
// Side that the line first intersected, if the line starts inside the
|
|
// polygon, this will not be set.
|
|
Maybe<size_t> intersectedSide;
|
|
};
|
|
|
|
typedef List<Vertex> VertexList;
|
|
typedef typename VertexList::iterator iterator;
|
|
typedef typename VertexList::const_iterator const_iterator;
|
|
|
|
static Polygon convexHull(VertexList points);
|
|
static Polygon clip(Polygon inputPoly, Polygon convexClipPoly);
|
|
|
|
// Creates a null polygon
|
|
Polygon();
|
|
Polygon(Polygon const& rhs);
|
|
Polygon(Polygon&& rhs);
|
|
|
|
template <typename DataType2>
|
|
explicit Polygon(Box<DataType2, 2> const& rect);
|
|
|
|
template <typename DataType2>
|
|
explicit Polygon(Polygon<DataType2> const& p2);
|
|
|
|
// This seems weird, but it isn't. SAT intersection works perfectly well
|
|
// with one Poly having only a single vertex.
|
|
explicit Polygon(Vertex const& coord);
|
|
|
|
// When specifying a polygon using this constructor the list should be in
|
|
// counterclockwise order.
|
|
explicit Polygon(VertexList const& vertexes);
|
|
|
|
Polygon(std::initializer_list<Vertex> vertexes);
|
|
|
|
bool isNull() const;
|
|
|
|
bool isConvex() const;
|
|
float convexArea() const;
|
|
|
|
void deduplicateVertexes(float maxDistance);
|
|
|
|
void add(Vertex const& a);
|
|
void remove(size_t i);
|
|
|
|
void clear();
|
|
|
|
VertexList const& vertexes() const;
|
|
VertexList& vertexes();
|
|
|
|
size_t sides() const;
|
|
|
|
Line side(size_t i) const;
|
|
|
|
DataType distance(Vertex const& c) const;
|
|
|
|
void translate(Vertex const& c);
|
|
|
|
void setCenter(Vertex const& c);
|
|
|
|
void rotate(DataType a, Vertex const& c = Vertex());
|
|
|
|
void scale(Vertex const& s, Vertex const& c = Vertex());
|
|
void scale(DataType s, Vertex const& c = Vertex());
|
|
|
|
void flipHorizontal(DataType horizontalPos = DataType());
|
|
void flipVertical(DataType verticalPos = DataType());
|
|
|
|
template <typename DataType2>
|
|
void transform(Matrix3<DataType2> const& transMat);
|
|
|
|
Vertex const& operator[](size_t i) const;
|
|
Vertex& operator[](size_t i);
|
|
|
|
bool operator==(Polygon const& rhs) const;
|
|
|
|
Polygon& operator=(Polygon const& rhs);
|
|
Polygon& operator=(Polygon&& rhs);
|
|
|
|
iterator begin();
|
|
const_iterator begin() const;
|
|
|
|
iterator end();
|
|
const_iterator end() const;
|
|
|
|
// vertex and normal wrap around so that i can never be out of range.
|
|
Vertex const& vertex(size_t i) const;
|
|
Vertex normal(size_t i) const;
|
|
|
|
Vertex center() const;
|
|
|
|
// a point in the volume, within min and max y, moved downwards to be a half
|
|
// width from the bottom (if that point is within a half width from the
|
|
// top, center() is returned)
|
|
Vertex bottomCenter() const;
|
|
|
|
Rect boundBox() const;
|
|
|
|
// Determine winding number of the given point.
|
|
int windingNumber(Vertex const& p) const;
|
|
|
|
bool contains(Vertex const& p) const;
|
|
|
|
// Normal SAT intersection finding the shortest separation of two convex
|
|
// polys.
|
|
IntersectResult satIntersection(Polygon const& p) const;
|
|
|
|
// A directional version of a SAT intersection that will only separate
|
|
// parallel to the given direction. If choseSign is true, then the
|
|
// separation can occur either with the given direction or opposite it, but
|
|
// still parallel. If it is false, separation will always occur in the given
|
|
// direction only.
|
|
IntersectResult directionalSatIntersection(Polygon const& p, Vertex const& direction, bool chooseSign) const;
|
|
|
|
// Returns the closest intersection with the poly, if any.
|
|
Maybe<LineIntersectResult> lineIntersection(Line const& l) const;
|
|
|
|
bool intersects(Polygon const& p) const;
|
|
bool intersects(Line const& l) const;
|
|
|
|
private:
|
|
// i must be between 0 and m_vertexes.size() - 1
|
|
Line sideAt(size_t i) const;
|
|
|
|
VertexList m_vertexes;
|
|
};
|
|
|
|
template <typename DataType>
|
|
std::ostream& operator<<(std::ostream& os, Polygon<DataType> const& poly);
|
|
|
|
typedef Polygon<int> PolyI;
|
|
typedef Polygon<float> PolyF;
|
|
typedef Polygon<double> PolyD;
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType> Polygon<DataType>::convexHull(VertexList points) {
|
|
if (points.empty())
|
|
return {};
|
|
|
|
auto cross = [](Vertex o, Vertex a, Vertex b) {
|
|
return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);
|
|
};
|
|
sort(points);
|
|
|
|
VertexList lower;
|
|
for (auto const& point : points) {
|
|
while (lower.size() >= 2 && cross(lower[lower.size() - 2], lower[lower.size() - 1], point) <= 0)
|
|
lower.removeLast();
|
|
lower.append(point);
|
|
}
|
|
|
|
VertexList upper;
|
|
for (auto const& point : reverseIterate(points)) {
|
|
while (upper.size() >= 2 && cross(upper[upper.size() - 2], upper[upper.size() - 1], point) <= 0)
|
|
upper.removeLast();
|
|
upper.append(point);
|
|
}
|
|
|
|
upper.removeLast();
|
|
lower.removeLast();
|
|
lower.appendAll(take(upper));
|
|
return Polygon<DataType>(std::move(lower));
|
|
}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType> Polygon<DataType>::clip(Polygon inputPoly, Polygon convexClipPoly) {
|
|
if (inputPoly.sides() == 0)
|
|
return inputPoly;
|
|
|
|
auto insideEdge = [](Line const& edge, Vertex const& p) {
|
|
return ((edge.max() - edge.min()) ^ (p - edge.min())) > 0;
|
|
};
|
|
|
|
VertexList outputVertexes = take(inputPoly.m_vertexes);
|
|
for (size_t i = 0; i < convexClipPoly.sides(); ++i) {
|
|
if (outputVertexes.empty())
|
|
break;
|
|
|
|
Line clipEdge = convexClipPoly.sideAt(i);
|
|
VertexList inputVertexes = take(outputVertexes);
|
|
Vertex s = inputVertexes.last();
|
|
for (Vertex e : inputVertexes) {
|
|
if (insideEdge(clipEdge, e)) {
|
|
if (!insideEdge(clipEdge, s))
|
|
outputVertexes.append(clipEdge.intersection(Line(s, e)).point);
|
|
outputVertexes.append(e);
|
|
} else if (insideEdge(clipEdge, s)) {
|
|
outputVertexes.append(clipEdge.intersection(Line(s, e)).point);
|
|
}
|
|
s = e;
|
|
}
|
|
}
|
|
|
|
return Polygon(std::move(outputVertexes));
|
|
}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>::Polygon() {}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>::Polygon(Polygon const& rhs)
|
|
: m_vertexes(rhs.m_vertexes) {}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>::Polygon(Polygon&& rhs)
|
|
: m_vertexes(std::move(rhs.m_vertexes)) {}
|
|
|
|
template <typename DataType>
|
|
template <typename DataType2>
|
|
Polygon<DataType>::Polygon(Box<DataType2, 2> const& rect) {
|
|
m_vertexes = {
|
|
Vertex(rect.min()), Vertex(rect.max()[0], rect.min()[1]), Vertex(rect.max()), Vertex(rect.min()[0], rect.max()[1])};
|
|
}
|
|
|
|
template <typename DataType>
|
|
template <typename DataType2>
|
|
Polygon<DataType>::Polygon(Polygon<DataType2> const& p2) {
|
|
for (auto const& v : p2)
|
|
m_vertexes.push_back(Vertex(v));
|
|
}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>::Polygon(Vertex const& coord) {
|
|
m_vertexes.push_back(coord);
|
|
}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>::Polygon(VertexList const& vertexes)
|
|
: m_vertexes(vertexes) {}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>::Polygon(std::initializer_list<Vertex> vertexes)
|
|
: m_vertexes(vertexes) {}
|
|
|
|
template <typename DataType>
|
|
bool Polygon<DataType>::isNull() const {
|
|
return m_vertexes.empty();
|
|
}
|
|
|
|
template <typename DataType>
|
|
bool Polygon<DataType>::isConvex() const {
|
|
if (sides() < 2)
|
|
return true;
|
|
|
|
for (unsigned i = 0; i < sides(); ++i) {
|
|
if ((side(i + 1).diff() ^ side(i).diff()) > 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename DataType>
|
|
float Polygon<DataType>::convexArea() const {
|
|
float area = 0.0f;
|
|
for (size_t i = 0; i < m_vertexes.size(); ++i) {
|
|
Vertex const& v1 = m_vertexes[i];
|
|
Vertex const& v2 = i == m_vertexes.size() - 1 ? m_vertexes[0] : m_vertexes[i + 1];
|
|
area += 0.5f * (v1[0] * v2[1] - v1[1] * v2[0]);
|
|
}
|
|
return area;
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::deduplicateVertexes(float maxDistance) {
|
|
if (m_vertexes.empty())
|
|
return;
|
|
|
|
float distSquared = square(maxDistance);
|
|
VertexList newVertexes = {m_vertexes[0]};
|
|
for (size_t i = 1; i < m_vertexes.size(); ++i) {
|
|
if (vmagSquared(m_vertexes[i] - newVertexes.last()) > distSquared)
|
|
newVertexes.append(m_vertexes[i]);
|
|
}
|
|
|
|
if (vmagSquared(newVertexes.first() - newVertexes.last()) <= distSquared)
|
|
newVertexes.removeLast();
|
|
|
|
m_vertexes = std::move(newVertexes);
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::add(Vertex const& a) {
|
|
m_vertexes.push_back(a);
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::remove(size_t i) {
|
|
auto it = begin() + i % sides();
|
|
m_vertexes.erase(it);
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::clear() {
|
|
m_vertexes.clear();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::VertexList const& Polygon<DataType>::vertexes() const {
|
|
return m_vertexes;
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::VertexList& Polygon<DataType>::vertexes() {
|
|
return m_vertexes;
|
|
}
|
|
|
|
template <typename DataType>
|
|
size_t Polygon<DataType>::sides() const {
|
|
return m_vertexes.size();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::Line Polygon<DataType>::side(size_t i) const {
|
|
return sideAt(i % m_vertexes.size());
|
|
}
|
|
|
|
template <typename DataType>
|
|
DataType Polygon<DataType>::distance(Vertex const& c) const {
|
|
if (contains(c))
|
|
return 0;
|
|
|
|
DataType dist = highest<DataType>();
|
|
for (size_t i = 0; i < m_vertexes.size(); ++i)
|
|
dist = min(dist, sideAt(i).distanceTo(c));
|
|
|
|
return dist;
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::translate(Vertex const& c) {
|
|
for (auto& v : m_vertexes)
|
|
v += c;
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::setCenter(Vertex const& c) {
|
|
translate(c - center());
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::rotate(DataType a, Vertex const& c) {
|
|
for (auto& v : m_vertexes)
|
|
v = (v - c).rotate(a) + c;
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::scale(Vertex const& s, Vertex const& c) {
|
|
for (auto& v : m_vertexes)
|
|
v = vmult((v - c), s) + c;
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::scale(DataType s, Vertex const& c) {
|
|
scale(Vertex::filled(s), c);
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::flipHorizontal(DataType horizontalPos) {
|
|
scale(Vertex(-1, 1), Vertex(horizontalPos, 0));
|
|
// Reverse vertexes to make sure poly remains counter-clockwise after flip.
|
|
std::reverse(m_vertexes.begin(), m_vertexes.end());
|
|
}
|
|
|
|
template <typename DataType>
|
|
void Polygon<DataType>::flipVertical(DataType verticalPos) {
|
|
scale(Vertex(1, -1), Vertex(0, verticalPos));
|
|
// Reverse vertexes to make sure poly remains counter-clockwise after flip.
|
|
std::reverse(m_vertexes.begin(), m_vertexes.end());
|
|
}
|
|
|
|
template <typename DataType>
|
|
template <typename DataType2>
|
|
void Polygon<DataType>::transform(Matrix3<DataType2> const& transMat) {
|
|
for (auto& v : m_vertexes)
|
|
v = transMat.transformVec2(v);
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::Vertex const& Polygon<DataType>::operator[](size_t i) const {
|
|
return m_vertexes[i];
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::Vertex& Polygon<DataType>::operator[](size_t i) {
|
|
return m_vertexes[i];
|
|
}
|
|
|
|
template <typename DataType>
|
|
bool Polygon<DataType>::operator==(Polygon<DataType> const& rhs) const {
|
|
return m_vertexes == rhs.m_vertexes;
|
|
}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>& Polygon<DataType>::operator=(Polygon const& rhs) {
|
|
m_vertexes = rhs.m_vertexes;
|
|
return *this;
|
|
}
|
|
|
|
template <typename DataType>
|
|
Polygon<DataType>& Polygon<DataType>::operator=(Polygon&& rhs) {
|
|
m_vertexes = std::move(rhs.m_vertexes);
|
|
return *this;
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::iterator Polygon<DataType>::begin() {
|
|
return m_vertexes.begin();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::const_iterator Polygon<DataType>::begin() const {
|
|
return m_vertexes.begin();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::iterator Polygon<DataType>::end() {
|
|
return m_vertexes.end();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::const_iterator Polygon<DataType>::end() const {
|
|
return m_vertexes.end();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::Vertex const& Polygon<DataType>::vertex(size_t i) const {
|
|
return m_vertexes[i % m_vertexes.size()];
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::Vertex Polygon<DataType>::normal(size_t i) const {
|
|
Vertex diff = side(i).diff();
|
|
|
|
if (diff == Vertex())
|
|
return Vertex();
|
|
|
|
return diff.rot90().normalized();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::Vertex Polygon<DataType>::center() const {
|
|
return std::accumulate(m_vertexes.begin(), m_vertexes.end(), Vertex()) / (DataType)m_vertexes.size();
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::Vertex Polygon<DataType>::bottomCenter() const {
|
|
if (m_vertexes.size() == 0)
|
|
return Vertex();
|
|
Polygon<DataType>::Vertex center = std::accumulate(m_vertexes.begin(), m_vertexes.end(), Vertex()) / (DataType)m_vertexes.size();
|
|
Polygon<DataType>::Vertex bottomLeft = *std::min_element(m_vertexes.begin(), m_vertexes.end());
|
|
Polygon<DataType>::Vertex topRight = *std::max_element(m_vertexes.begin(), m_vertexes.end());
|
|
Polygon<DataType>::Vertex size = topRight - bottomLeft;
|
|
if (size.x() > size.y())
|
|
return center;
|
|
return Polygon<DataType>::Vertex(center.x(), bottomLeft.y() + size.x() / 2.0f);
|
|
}
|
|
|
|
template <typename DataType>
|
|
auto Polygon<DataType>::boundBox() const -> Rect {
|
|
auto bounds = Rect::null();
|
|
for (auto const& v : m_vertexes)
|
|
bounds.combine(v);
|
|
return bounds;
|
|
}
|
|
|
|
template <typename DataType>
|
|
int Polygon<DataType>::windingNumber(Vertex const& p) const {
|
|
|
|
auto isLeft = [](Vertex const& p0, Vertex const& p1, Vertex const& p2) {
|
|
return ((p1[0] - p0[0]) * (p2[1] - p0[1]) - (p2[0] - p0[0]) * (p1[1] - p0[1]));
|
|
};
|
|
|
|
// the winding number counter
|
|
int wn = 0;
|
|
|
|
// loop through all edges of the polygon
|
|
for (size_t i = 0; i < m_vertexes.size(); ++i) {
|
|
auto const& first = m_vertexes[i];
|
|
auto const& second = i == m_vertexes.size() - 1 ? m_vertexes[0] : m_vertexes[i + 1];
|
|
|
|
// start y <= p[1]
|
|
if (first[1] <= p[1]) {
|
|
if (second[1] > p[1]) {
|
|
// an upward crossing
|
|
if (isLeft(first, second, p) > 0) {
|
|
// p left of edge
|
|
// have a valid up intersect
|
|
++wn;
|
|
}
|
|
}
|
|
} else {
|
|
// start y > p[1] (no test needed)
|
|
if (second[1] <= p[1]) {
|
|
// a downward crossing
|
|
if (isLeft(first, second, p) < 0) {
|
|
// p right of edge
|
|
// have a valid down intersect
|
|
--wn;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return wn;
|
|
}
|
|
|
|
template <typename DataType>
|
|
bool Polygon<DataType>::contains(Vertex const& p) const {
|
|
return windingNumber(p) != 0;
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::IntersectResult Polygon<DataType>::satIntersection(Polygon const& p) const {
|
|
// "Accumulates" the shortest separating distance and axis of this poly and
|
|
// the given poly, after projecting all the vertexes of each poly onto a
|
|
// given axis. Used by SAT intersection, meant to be called with each tested
|
|
// axis.
|
|
auto accumSeparator = [this](Polygon const& p, Vertex const& axis, DataType& shortestOverlap, Vertex& finalSepDir) {
|
|
DataType myProjectionLow = std::numeric_limits<DataType>::max();
|
|
DataType targetProjectionHigh = std::numeric_limits<DataType>::lowest();
|
|
|
|
for (auto const& v : m_vertexes) {
|
|
DataType p = axis[0] * v[0] + axis[1] * v[1];
|
|
if (p < myProjectionLow)
|
|
myProjectionLow = p;
|
|
}
|
|
|
|
for (auto const& v : p.m_vertexes) {
|
|
DataType p = axis[0] * v[0] + axis[1] * v[1];
|
|
if (p > targetProjectionHigh)
|
|
targetProjectionHigh = p;
|
|
}
|
|
|
|
float overlap = targetProjectionHigh - myProjectionLow;
|
|
if (overlap < shortestOverlap) {
|
|
shortestOverlap = overlap;
|
|
finalSepDir = axis;
|
|
}
|
|
};
|
|
|
|
DataType overlap = std::numeric_limits<DataType>::max();
|
|
Vertex separatingDir = Vertex();
|
|
|
|
if (!m_vertexes.empty()) {
|
|
Vertex pv = m_vertexes[m_vertexes.size() - 1];
|
|
for (auto const& v : m_vertexes) {
|
|
Vertex sideNormal = pv - v;
|
|
if (sideNormal != Vertex()) {
|
|
sideNormal = sideNormal.rot90().normalized();
|
|
accumSeparator(p, -sideNormal, overlap, separatingDir);
|
|
}
|
|
pv = v;
|
|
}
|
|
}
|
|
|
|
if (!p.m_vertexes.empty()) {
|
|
Vertex pv = p.m_vertexes[p.m_vertexes.size() - 1];
|
|
for (auto const& v : p.m_vertexes) {
|
|
Vertex sideNormal = pv - v;
|
|
if (sideNormal != Vertex()) {
|
|
sideNormal = sideNormal.rot90().normalized();
|
|
accumSeparator(p, sideNormal, overlap, separatingDir);
|
|
}
|
|
pv = v;
|
|
}
|
|
}
|
|
|
|
IntersectResult isect;
|
|
isect.intersects = (overlap > 0);
|
|
isect.overlap = separatingDir * overlap;
|
|
|
|
return isect;
|
|
}
|
|
|
|
template <typename DataType>
|
|
typename Polygon<DataType>::IntersectResult Polygon<DataType>::directionalSatIntersection(
|
|
Polygon const& p, Vertex const& direction, bool chooseSign) const {
|
|
// A "directional" version of accumSeparator, that when intersecting only
|
|
// ever tries to separate in the given direction.
|
|
auto directionalAccumSeparator = [this](Polygon const& p, Vertex axis, DataType& shortestOverlap,
|
|
Vertex const& separatingDir, Vertex& finalSepDir, bool chooseDir) {
|
|
DataType myProjectionLow = std::numeric_limits<DataType>::max();
|
|
DataType targetProjectionHigh = std::numeric_limits<DataType>::lowest();
|
|
|
|
for (auto const& v : m_vertexes) {
|
|
DataType p = axis[0] * v[0] + axis[1] * v[1];
|
|
if (p < myProjectionLow)
|
|
myProjectionLow = p;
|
|
}
|
|
|
|
for (auto const& v : p.m_vertexes) {
|
|
DataType p = axis[0] * v[0] + axis[1] * v[1];
|
|
if (p > targetProjectionHigh)
|
|
targetProjectionHigh = p;
|
|
}
|
|
|
|
float overlap = targetProjectionHigh - myProjectionLow;
|
|
|
|
// Separation was found, skip the rest of the method.
|
|
if (overlap <= 0) {
|
|
if (overlap < shortestOverlap) {
|
|
shortestOverlap = overlap;
|
|
finalSepDir = axis;
|
|
}
|
|
return;
|
|
}
|
|
|
|
DataType axisDot = separatingDir * axis;
|
|
|
|
// Now, if we don't have separation and the axis is perpendicular to
|
|
// requested, we can do nothing, return.
|
|
if (axisDot == 0)
|
|
return;
|
|
|
|
// Separate along the given separating direction enough to separate as
|
|
// determined by this axis.
|
|
DataType projOverlap = overlap / axisDot;
|
|
if (chooseDir) {
|
|
DataType absProjOverlap = (projOverlap >= 0) ? projOverlap : -projOverlap;
|
|
if (absProjOverlap < shortestOverlap) {
|
|
shortestOverlap = absProjOverlap;
|
|
finalSepDir = separatingDir * (projOverlap / absProjOverlap);
|
|
}
|
|
} else if (projOverlap >= 0) {
|
|
if (projOverlap < shortestOverlap) {
|
|
shortestOverlap = projOverlap;
|
|
finalSepDir = separatingDir;
|
|
}
|
|
}
|
|
};
|
|
|
|
DataType overlap = std::numeric_limits<DataType>::max();
|
|
Vertex separatingDir = Vertex();
|
|
|
|
if (!m_vertexes.empty()) {
|
|
Vertex pv = m_vertexes[m_vertexes.size() - 1];
|
|
for (auto const& v : m_vertexes) {
|
|
Vertex sideNormal = pv - v;
|
|
if (sideNormal != Vertex()) {
|
|
sideNormal = sideNormal.rot90().normalized();
|
|
directionalAccumSeparator(p, -sideNormal, overlap, direction, separatingDir, chooseSign);
|
|
}
|
|
pv = v;
|
|
}
|
|
}
|
|
|
|
if (!p.m_vertexes.empty()) {
|
|
Vertex pv = p.m_vertexes[p.m_vertexes.size() - 1];
|
|
for (auto const& v : p.m_vertexes) {
|
|
Vertex sideNormal = pv - v;
|
|
if (sideNormal != Vertex()) {
|
|
sideNormal = sideNormal.rot90().normalized();
|
|
directionalAccumSeparator(p, sideNormal, overlap, direction, separatingDir, chooseSign);
|
|
}
|
|
pv = v;
|
|
}
|
|
}
|
|
|
|
IntersectResult isect;
|
|
isect.intersects = (overlap > 0);
|
|
isect.overlap = separatingDir * overlap;
|
|
|
|
return isect;
|
|
}
|
|
|
|
template <typename DataType>
|
|
auto Polygon<DataType>::lineIntersection(Line const& l) const -> Maybe<LineIntersectResult> {
|
|
if (contains(l.min()))
|
|
return LineIntersectResult{l.min(), DataType(0), {}};
|
|
|
|
Maybe<LineIntersectResult> nearestIntersection;
|
|
for (size_t i = 0; i < m_vertexes.size(); ++i) {
|
|
auto intersection = l.intersection(sideAt(i));
|
|
if (intersection.intersects) {
|
|
if (!nearestIntersection || intersection.t < nearestIntersection->along)
|
|
nearestIntersection = LineIntersectResult{intersection.point, intersection.t, i};
|
|
}
|
|
}
|
|
return nearestIntersection;
|
|
}
|
|
|
|
template <typename DataType>
|
|
bool Polygon<DataType>::intersects(Polygon const& p) const {
|
|
return satIntersection(p).intersects;
|
|
}
|
|
|
|
template <typename DataType>
|
|
bool Polygon<DataType>::intersects(Line const& l) const {
|
|
if (contains(l.min()) || contains(l.max()))
|
|
return true;
|
|
|
|
for (size_t i = 0; i < m_vertexes.size(); ++i) {
|
|
if (l.intersects(sideAt(i)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <typename DataType>
|
|
auto Polygon<DataType>::sideAt(size_t i) const -> Line {
|
|
if (i == m_vertexes.size() - 1)
|
|
return Line(m_vertexes[i], m_vertexes[0]);
|
|
else
|
|
return Line(m_vertexes[i], m_vertexes[i + 1]);
|
|
}
|
|
|
|
template <typename DataType>
|
|
std::ostream& operator<<(std::ostream& os, Polygon<DataType> const& poly) {
|
|
os << "[Poly: ";
|
|
for (auto i = poly.begin(); i != poly.end(); ++i) {
|
|
if (i != poly.begin())
|
|
os << ", ";
|
|
os << *i;
|
|
}
|
|
os << "]";
|
|
return os;
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|