osb/source/core/StarWeightedPool.hpp
Kai Blaschke 431a9c00a5
Fixed a huge amount of Clang warnings
On Linux and macOS, using Clang to compile OpenStarbound produces about 400 MB worth of warnings during the build, making the compiler output unreadable and slowing the build down considerably.

99% of the warnings were unqualified uses of std::move and std::forward, which are now all properly qualified.

Fixed a few other minor warnings about non-virtual destructors and some uses of std::move preventing copy elision on temporary objects.

Most remaining warnings are now unused parameters.
2024-02-19 16:55:19 +01:00

197 lines
5.0 KiB
C++

#ifndef STAR_WEIGHTED_POOL_HPP
#define STAR_WEIGHTED_POOL_HPP
#include "StarRandom.hpp"
namespace Star {
template <typename Item>
struct WeightedPool {
public:
typedef pair<double, Item> ItemsType;
typedef List<ItemsType> ItemsList;
WeightedPool();
template <typename Container>
explicit WeightedPool(Container container);
void add(double weight, Item item);
void clear();
ItemsList const& items() const;
size_t size() const;
pair<double, Item> const& at(size_t index) const;
double weight(size_t index) const;
Item const& item(size_t index) const;
bool empty() const;
// Return item using the given randomness source
Item select(RandomSource& rand) const;
// Return item using the global randomness source
Item select() const;
// Return item using fast static randomness from the given seed
Item select(uint64_t seed) const;
// Return a list of n items which are selected uniquely (by index), where
// n is the lesser of the desiredCount and the size of the pool.
// This INFLUENCES PROBABILITIES so it should not be used where a
// correct statistical distribution is required.
List<Item> selectUniques(size_t desiredCount) const;
List<Item> selectUniques(size_t desiredCount, uint64_t seed) const;
size_t selectIndex(RandomSource& rand) const;
size_t selectIndex() const;
size_t selectIndex(uint64_t seed) const;
private:
size_t selectIndex(double target) const;
ItemsList m_items;
double m_totalWeight;
};
template <typename Item>
WeightedPool<Item>::WeightedPool()
: m_totalWeight(0.0) {}
template <typename Item>
template <typename Container>
WeightedPool<Item>::WeightedPool(Container container)
: WeightedPool() {
for (auto const& pair : container)
add(get<0>(pair), get<1>(pair));
}
template <typename Item>
void WeightedPool<Item>::add(double weight, Item item) {
if (weight <= 0.0)
return;
m_items.append({weight, std::move(item)});
m_totalWeight += weight;
}
template <typename Item>
void WeightedPool<Item>::clear() {
m_items.clear();
m_totalWeight = 0.0;
}
template <typename Item>
auto WeightedPool<Item>::items() const -> ItemsList const & {
return m_items;
}
template <typename Item>
size_t WeightedPool<Item>::size() const {
return m_items.count();
}
template <typename Item>
pair<double, Item> const& WeightedPool<Item>::at(size_t index) const {
return m_items.at(index);
}
template <typename Item>
double WeightedPool<Item>::weight(size_t index) const {
return at(index).first;
}
template <typename Item>
Item const& WeightedPool<Item>::item(size_t index) const {
return at(index).second;
}
template <typename Item>
bool WeightedPool<Item>::empty() const {
return m_items.empty();
}
template <typename Item>
Item WeightedPool<Item>::select(RandomSource& rand) const {
if (m_items.empty())
return Item();
return m_items[selectIndex(rand)].second;
}
template <typename Item>
Item WeightedPool<Item>::select() const {
if (m_items.empty())
return Item();
return m_items[selectIndex()].second;
}
template <typename Item>
Item WeightedPool<Item>::select(uint64_t seed) const {
if (m_items.empty())
return Item();
return m_items[selectIndex(seed)].second;
}
template <typename Item>
List<Item> WeightedPool<Item>::selectUniques(size_t desiredCount) const {
return selectUniques(desiredCount, Random::randu64());
}
template <typename Item>
List<Item> WeightedPool<Item>::selectUniques(size_t desiredCount, uint64_t seed) const {
size_t targetCount = std::min(desiredCount, size());
Set<size_t> indices;
while (indices.size() < targetCount)
indices.add(selectIndex(++seed));
List<Item> result;
for (size_t i : indices)
result.append(m_items[i].second);
return result;
}
template <typename Item>
size_t WeightedPool<Item>::selectIndex(RandomSource& rand) const {
return selectIndex(rand.randd());
}
template <typename Item>
size_t WeightedPool<Item>::selectIndex() const {
return selectIndex(Random::randd());
}
template <typename Item>
size_t WeightedPool<Item>::selectIndex(uint64_t seed) const {
return selectIndex(staticRandomDouble(seed));
}
template <typename Item>
size_t WeightedPool<Item>::selectIndex(double target) const {
if (m_items.empty())
return NPos;
// Test a randomly generated target against each weighted item in turn, and
// see if that weighted item's weight value crosses the target. This way, a
// random item is picked from the list, but (roughly) weighted to be
// proportional to its weight over the weight of all entries.
//
// TODO: This is currently O(n), but can easily be made O(log(n)) by using a
// tree. If this shows up in performance measurements, this is an obvious
// improvement.
double accumulatedWeight = 0.0f;
for (size_t i = 0; i < m_items.size(); ++i) {
accumulatedWeight += m_items[i].first / m_totalWeight;
if (target <= accumulatedWeight)
return i;
}
// If we haven't crossed the target, just assume floating point error has
// caused us to not quite make it to the last item.
return m_items.size() - 1;
}
}
#endif