osb/source/core/StarBTree.hpp

938 lines
28 KiB
C++
Raw Normal View History

2023-06-20 04:33:09 +00:00
#ifndef STAR_B_TREE_HPP
#define STAR_B_TREE_HPP
#include "StarList.hpp"
#include "StarMaybe.hpp"
namespace Star {
// Mixin class for implementing a simple B+ Tree style database. LOTS of
// possibilities for improvement, especially in batch deletes / inserts.
//
// The Base class itself must have the following interface:
//
// struct Base {
// typedef KeyT Key;
// typedef DataT Data;
// typedef PointerT Pointer;
//
// // Index and Leaf types may either be a literal struct, or a pointer, or a
// // handle or whatever. They are meant to be opaque.
// typedef IndexT Index;
// typedef LeafT Leaf;
//
// Pointer rootPointer();
// bool rootIsLeaf();
// void setNewRoot(Pointer pointer, bool isLeaf);
//
// Index createIndex(Pointer beginPointer);
//
// // Load an existing index.
// Index loadIndex(Pointer pointer);
//
// size_t indexPointerCount(Index const& index);
// Pointer indexPointer(Index const& index, size_t i);
// void indexUpdatePointer(Index& index, size_t i, Pointer p);
//
// Key indexKeyBefore(Index const& index, size_t i);
// void indexUpdateKeyBefore(Index& index, size_t i, Key k);
//
// void indexRemoveBefore(Index& index, size_t i);
// void indexInsertAfter(Index& index, size_t i, Key k, Pointer p);
//
// size_t indexLevel(Index const& index);
// void setIndexLevel(Index& index, size_t indexLevel);
//
// // Should return true if index should try to shift elements into this index
// // from sibling index.
// bool indexNeedsShift(Index const& index);
//
// // Should return false if no shift done. If merging, always merge to the
// // left.
// bool indexShift(Index& left, Key const& mid, Index& right);
//
// // If a split has occurred, split right and return the mid-key and new
// // right node.
// Maybe<pair<Key, Index>> indexSplit(Index& index);
//
// // Index updated, needs storing. Return pointer to stored index (may
// // change). Index will not be used after store.
// Pointer storeIndex(Index index);
//
// // Index no longer part of BTree. Index will not be used after delete.
// void deleteIndex(Index index);
//
// // Should create new empty leaf.
// Leaf createLeaf();
//
// Leaf loadLeaf(Pointer pointer);
//
// size_t leafElementCount(Leaf const& leaf);
// Key leafKey(Leaf const& leaf, size_t i);
// Data leafData(Leaf const& leaf, size_t i);
//
// void leafInsert(Leaf& leaf, size_t i, Key k, Data d);
// void leafRemove(Leaf& leaf, size_t i);
//
// // Set and get next-leaf pointers. It is not required that next-leaf
// // pointers be kept or that they be valid, so nextLeaf may return nothing.
// void setNextLeaf(Leaf& leaf, Maybe<Pointer> n);
// Maybe<Pointer> nextLeaf(Leaf const& leaf);
//
// // Should return true if leaf should try to shift elements into this leaf
// // from sibling leaf.
// bool leafNeedsShift(Leaf const& l);
//
// // Should return false if no change necessary. If merging, always merge to
// // the left.
// bool leafShift(Leaf& left, Leaf& right);
//
// // Always split right and return new right node if split occurs.
// Maybe<Leaf> leafSplit(Leaf& leaf);
//
// // Leaf has been updated, and needs to be written to storage. Return new
// // pointer (may be different). Leaf will not be used after store.
// Pointer storeLeaf(Leaf leaf);
//
// // Leaf is no longer part of this BTree. Leaf will not be used after
// // delete.
// void deleteLeaf(Leaf leaf);
// };
template <typename Base>
class BTreeMixin : public Base {
public:
typedef typename Base::Key Key;
typedef typename Base::Data Data;
typedef typename Base::Pointer Pointer;
typedef typename Base::Index Index;
typedef typename Base::Leaf Leaf;
bool contains(Key const& k);
Maybe<Data> find(Key const& k);
// Range is inclusve on lower bound and exclusive on upper bound.
List<pair<Key, Data>> find(Key const& lower, Key const& upper);
// Visitor is called as visitor(key, data).
template <typename Visitor>
void forEach(Key const& lower, Key const& upper, Visitor&& visitor);
// Visitor is called as visitor(key, data).
template <typename Visitor>
void forAll(Visitor&& visitor);
// Recover all key value pairs possible, catching exceptions during scan and
// reading as much data as possible. Visitor is called as visitor(key, data),
// ErrorHandler is called as error(char const*, std::exception const&)
template <typename Visitor, typename ErrorHandler>
void recoverAll(Visitor&& visitor, ErrorHandler&& error);
// Visitor is called either as visitor(Index const&) or visitor(Leaf const&).
// Return false to halt traversal, true to continue.
template <typename Visitor>
void forAllNodes(Visitor&& visitor);
// returns true if old value overwritten.
bool insert(Key k, Data data);
// returns true if key was found.
bool remove(Key k);
// Removes list of keys in the given range, returns count removed.
// TODO: SLOW, right now does lots of different removes separately. Need to
// implement batch inserts and deletes.
List<pair<Key, Data>> remove(Key const& lower, Key const& upper);
uint64_t indexCount();
uint64_t leafCount();
uint64_t recordCount();
uint32_t indexLevels();
void createNewRoot();
private:
struct DataElement {
Key key;
Data data;
};
typedef List<DataElement> DataList;
struct DataCollector {
void operator()(Key const& k, Data const& d);
List<pair<Key, Data>> list;
};
struct RecordCounter {
bool operator()(Index const& index);
bool operator()(Leaf const& leaf);
BTreeMixin* parent;
uint64_t count;
};
struct IndexCounter {
bool operator()(Index const& index);
bool operator()(Leaf const&);
BTreeMixin* parent;
uint64_t count;
};
struct LeafCounter {
bool operator()(Index const& index);
bool operator()(Leaf const&);
BTreeMixin* parent;
uint64_t count;
};
enum ModifyAction {
InsertAction,
RemoveAction
};
enum ModifyState {
LeafNeedsJoin,
IndexNeedsJoin,
LeafSplit,
IndexSplit,
LeafNeedsUpdate,
IndexNeedsUpdate,
Done
};
struct ModifyInfo {
ModifyInfo(ModifyAction a, DataElement e);
DataElement targetElement;
ModifyAction action;
bool found;
ModifyState state;
Key newKey;
Pointer newPointer;
};
bool contains(Index const& index, Key const& k);
bool contains(Leaf const& leaf, Key const& k);
Maybe<Data> find(Index const& index, Key const& k);
Maybe<Data> find(Leaf const& leaf, Key const& k);
// Returns the highest key for the last leaf we have searched
template <typename Visitor>
Key forEach(Index const& index, Key const& lower, Key const& upper, Visitor&& o);
template <typename Visitor>
Key forEach(Leaf const& leaf, Key const& lower, Key const& upper, Visitor&& o);
// Returns the highest key for the last leaf we have searched
template <typename Visitor>
Key forAll(Index const& index, Visitor&& o);
template <typename Visitor>
Key forAll(Leaf const& leaf, Visitor&& o);
template <typename Visitor, typename ErrorHandler>
void recoverAll(Index const& index, Visitor&& o, ErrorHandler&& error);
template <typename Visitor, typename ErrorHandler>
void recoverAll(Leaf const& leaf, Visitor&& o, ErrorHandler&& error);
// Variable size values mean that merges can happen on inserts, so can't
// split up into insert / remove methods
void modify(Leaf& leafNode, ModifyInfo& info);
void modify(Index& indexNode, ModifyInfo& info);
bool modify(DataElement e, ModifyAction action);
// Traverses Indexes down the tree on the left side to get the least valued
// key that is pointed to by any leaf under this index. Needed when joining.
Key getLeftKey(Index const& index);
template <typename Visitor>
void forAllNodes(Index const& index, Visitor&& visitor);
pair<size_t, bool> leafFind(Leaf const& leaf, Key const& key);
size_t indexFind(Index const& index, Key const& key);
};
template <typename Base>
bool BTreeMixin<Base>::contains(Key const& k) {
if (Base::rootIsLeaf())
return contains(Base::loadLeaf(Base::rootPointer()), k);
else
return contains(Base::loadIndex(Base::rootPointer()), k);
}
template <typename Base>
auto BTreeMixin<Base>::find(Key const& k) -> Maybe<Data> {
if (Base::rootIsLeaf())
return find(Base::loadLeaf(Base::rootPointer()), k);
else
return find(Base::loadIndex(Base::rootPointer()), k);
}
template <typename Base>
auto BTreeMixin<Base>::find(Key const& lower, Key const& upper) -> List<pair<Key, Data>> {
DataCollector collector;
forEach(lower, upper, collector);
return collector.list;
}
template <typename Base>
template <typename Visitor>
void BTreeMixin<Base>::forEach(Key const& lower, Key const& upper, Visitor&& visitor) {
if (Base::rootIsLeaf())
forEach(Base::loadLeaf(Base::rootPointer()), lower, upper, forward<Visitor>(visitor));
else
forEach(Base::loadIndex(Base::rootPointer()), lower, upper, forward<Visitor>(visitor));
}
template <typename Base>
template <typename Visitor>
void BTreeMixin<Base>::forAll(Visitor&& visitor) {
if (Base::rootIsLeaf())
forAll(Base::loadLeaf(Base::rootPointer()), forward<Visitor>(visitor));
else
forAll(Base::loadIndex(Base::rootPointer()), forward<Visitor>(visitor));
}
template <typename Base>
template <typename Visitor, typename ErrorHandler>
void BTreeMixin<Base>::recoverAll(Visitor&& visitor, ErrorHandler&& error) {
try {
if (Base::rootIsLeaf())
recoverAll(Base::loadLeaf(Base::rootPointer()), forward<Visitor>(visitor), forward<ErrorHandler>(error));
else
recoverAll(Base::loadIndex(Base::rootPointer()), forward<Visitor>(visitor), forward<ErrorHandler>(error));
} catch (std::exception const& e) {
error("Error loading root index or leaf node", e);
}
}
template <typename Base>
template <typename Visitor>
void BTreeMixin<Base>::forAllNodes(Visitor&& visitor) {
if (Base::rootIsLeaf())
visitor(Base::loadLeaf(Base::rootPointer()));
else
forAllNodes(Base::loadIndex(Base::rootPointer()), forward<Visitor>(visitor));
}
template <typename Base>
bool BTreeMixin<Base>::insert(Key k, Data data) {
return modify(DataElement{move(k), move(data)}, InsertAction);
}
template <typename Base>
bool BTreeMixin<Base>::remove(Key k) {
return modify(DataElement{move(k), Data()}, RemoveAction);
}
template <typename Base>
auto BTreeMixin<Base>::remove(Key const& lower, Key const& upper) -> List<pair<Key, Data>> {
DataCollector collector;
forEach(lower, upper, collector);
for (auto const& elem : collector.list)
remove(elem.first);
return collector.list;
}
template <typename Base>
uint64_t BTreeMixin<Base>::indexCount() {
IndexCounter counter = {this, 0};
forAllNodes(counter);
return counter.count;
}
template <typename Base>
uint64_t BTreeMixin<Base>::leafCount() {
LeafCounter counter = {this, 0};
forAllNodes(counter);
return counter.count;
}
template <typename Base>
uint64_t BTreeMixin<Base>::recordCount() {
RecordCounter counter = {this, 0};
forAllNodes(counter);
return counter.count;
}
template <typename Base>
uint32_t BTreeMixin<Base>::indexLevels() {
if (Base::rootIsLeaf())
return 0;
else
return Base::indexLevel(Base::loadIndex(Base::rootPointer())) + 1;
}
template <typename Base>
void BTreeMixin<Base>::createNewRoot() {
Base::setNewRoot(Base::storeLeaf(Base::createLeaf()), true);
}
template <typename Base>
void BTreeMixin<Base>::DataCollector::operator()(Key const& k, Data const& d) {
list.push_back({k, d});
}
template <typename Base>
bool BTreeMixin<Base>::RecordCounter::operator()(Index const&) {
return true;
}
template <typename Base>
bool BTreeMixin<Base>::RecordCounter::operator()(Leaf const& leaf) {
count += parent->leafElementCount(leaf);
return true;
}
template <typename Base>
bool BTreeMixin<Base>::IndexCounter::operator()(Index const& index) {
++count;
if (parent->indexLevel(index) == 0)
return false;
else
return true;
}
template <typename Base>
bool BTreeMixin<Base>::IndexCounter::operator()(Leaf const&) {
return false;
}
template <typename Base>
bool BTreeMixin<Base>::LeafCounter::operator()(Index const& index) {
if (parent->indexLevel(index) == 0) {
count += parent->indexPointerCount(index);
return false;
} else {
return true;
}
}
template <typename Base>
bool BTreeMixin<Base>::LeafCounter::operator()(Leaf const&) {
return false;
}
template <typename Base>
BTreeMixin<Base>::ModifyInfo::ModifyInfo(ModifyAction a, DataElement e)
: targetElement(move(e)), action(a) {
found = false;
state = Done;
}
template <typename Base>
bool BTreeMixin<Base>::contains(Index const& index, Key const& k) {
size_t i = indexFind(index, k);
if (Base::indexLevel(index) == 0)
return contains(Base::loadLeaf(Base::indexPointer(index, i)), k);
else
return contains(Base::loadIndex(Base::indexPointer(index, i)), k);
}
template <typename Base>
bool BTreeMixin<Base>::contains(Leaf const& leaf, Key const& k) {
return leafFind(leaf, k).second;
}
template <typename Base>
auto BTreeMixin<Base>::find(Index const& index, Key const& k) -> Maybe<Data> {
size_t i = indexFind(index, k);
if (Base::indexLevel(index) == 0)
return find(Base::loadLeaf(Base::indexPointer(index, i)), k);
else
return find(Base::loadIndex(Base::indexPointer(index, i)), k);
}
template <typename Base>
auto BTreeMixin<Base>::find(Leaf const& leaf, Key const& k) -> Maybe<Data> {
pair<size_t, bool> res = leafFind(leaf, k);
if (res.second)
return Base::leafData(leaf, res.first);
else
return {};
}
template <typename Base>
template <typename Visitor>
auto BTreeMixin<Base>::forEach(Index const& index, Key const& lower, Key const& upper, Visitor&& o) -> Key {
size_t i = indexFind(index, lower);
Key lastKey;
if (Base::indexLevel(index) == 0)
lastKey = forEach(Base::loadLeaf(Base::indexPointer(index, i)), lower, upper, forward<Visitor>(o));
else
lastKey = forEach(Base::loadIndex(Base::indexPointer(index, i)), lower, upper, forward<Visitor>(o));
if (!(lastKey < upper))
return lastKey;
while (i < Base::indexPointerCount(index) - 1) {
++i;
// We're visiting the right side of the key, so if lastKey >=
// indexKeyBefore(index, i), we have already visited this node via nextLeaf
// pointers, so skip it.
if (!(lastKey < Base::indexKeyBefore(index, i)))
continue;
if (Base::indexLevel(index) == 0)
lastKey = forEach(Base::loadLeaf(Base::indexPointer(index, i)), lower, upper, forward<Visitor>(o));
else
lastKey = forEach(Base::loadIndex(Base::indexPointer(index, i)), lower, upper, forward<Visitor>(o));
if (!(lastKey < upper))
break;
}
return lastKey;
}
template <typename Base>
template <typename Visitor>
auto BTreeMixin<Base>::forEach(Leaf const& leaf, Key const& lower, Key const& upper, Visitor&& o) -> Key {
if (Base::leafElementCount(leaf) == 0)
return Key();
size_t lowerIndex = leafFind(leaf, lower).first;
for (size_t i = lowerIndex; i != Base::leafElementCount(leaf); ++i) {
Key currentKey = Base::leafKey(leaf, i);
if (!(currentKey < lower)) {
if (currentKey < upper)
o(currentKey, Base::leafData(leaf, i));
else
return currentKey;
}
}
if (auto nextLeafPointer = Base::nextLeaf(leaf))
return forEach(Base::loadLeaf(*nextLeafPointer), lower, upper, o);
else
return Base::leafKey(leaf, Base::leafElementCount(leaf) - 1);
}
template <typename Base>
template <typename Visitor>
auto BTreeMixin<Base>::forAll(Index const& index, Visitor&& o) -> Key {
Key lastKey;
for (size_t i = 0; i < Base::indexPointerCount(index); ++i) {
// If we're to the right of a given key, but lastKey >= this key, then we
// must have already visited this node via nextLeaf pointers, so we can
// skip it.
if (i > 0 && !(lastKey < Base::indexKeyBefore(index, i)))
continue;
if (Base::indexLevel(index) == 0)
lastKey = forAll(Base::loadLeaf(Base::indexPointer(index, i)), forward<Visitor>(o));
else
lastKey = forAll(Base::loadIndex(Base::indexPointer(index, i)), forward<Visitor>(o));
}
return lastKey;
}
template <typename Base>
template <typename Visitor>
auto BTreeMixin<Base>::forAll(Leaf const& leaf, Visitor&& o) -> Key {
if (Base::leafElementCount(leaf) == 0)
return Key();
for (size_t i = 0; i != Base::leafElementCount(leaf); ++i) {
Key currentKey = Base::leafKey(leaf, i);
o(Base::leafKey(leaf, i), Base::leafData(leaf, i));
}
if (auto nextLeafPointer = Base::nextLeaf(leaf))
return forAll(Base::loadLeaf(*nextLeafPointer), forward<Visitor>(o));
else
return Base::leafKey(leaf, Base::leafElementCount(leaf) - 1);
}
template <typename Base>
template <typename Visitor, typename ErrorHandler>
void BTreeMixin<Base>::recoverAll(Index const& index, Visitor&& visitor, ErrorHandler&& error) {
try {
for (size_t i = 0; i < Base::indexPointerCount(index); ++i) {
if (Base::indexLevel(index) == 0) {
try {
recoverAll(Base::loadLeaf(Base::indexPointer(index, i)), forward<Visitor>(visitor), forward<ErrorHandler>(error));
} catch (std::exception const& e) {
error("Error loading leaf node", e);
}
} else {
try {
recoverAll(Base::loadIndex(Base::indexPointer(index, i)), forward<Visitor>(visitor), forward<ErrorHandler>(error));
} catch (std::exception const& e) {
error("Error loading index node", e);
}
}
}
} catch (std::exception const& e) {
error("Error reading index node", e);
}
}
template <typename Base>
template <typename Visitor, typename ErrorHandler>
void BTreeMixin<Base>::recoverAll(Leaf const& leaf, Visitor&& visitor, ErrorHandler&& error) {
try {
for (size_t i = 0; i != Base::leafElementCount(leaf); ++i) {
Key currentKey = Base::leafKey(leaf, i);
visitor(Base::leafKey(leaf, i), Base::leafData(leaf, i));
}
} catch (std::exception const& e) {
error("Error reading leaf node", e);
}
}
template <typename Base>
void BTreeMixin<Base>::modify(Leaf& leafNode, ModifyInfo& info) {
info.state = Done;
pair<size_t, bool> res = leafFind(leafNode, info.targetElement.key);
size_t i = res.first;
if (res.second) {
info.found = true;
Base::leafRemove(leafNode, i);
}
// No change necessary.
if (info.action == RemoveAction && !info.found)
return;
if (info.action == InsertAction)
Base::leafInsert(leafNode, i, info.targetElement.key, move(info.targetElement.data));
auto splitResult = Base::leafSplit(leafNode);
if (splitResult) {
Base::setNextLeaf(*splitResult, Base::nextLeaf(leafNode));
info.newKey = Base::leafKey(*splitResult, 0);
info.newPointer = Base::storeLeaf(splitResult.take());
Base::setNextLeaf(leafNode, info.newPointer);
info.state = LeafSplit;
} else if (Base::leafNeedsShift(leafNode)) {
info.state = LeafNeedsJoin;
} else {
info.state = LeafNeedsUpdate;
}
}
template <typename Base>
void BTreeMixin<Base>::modify(Index& indexNode, ModifyInfo& info) {
size_t i = indexFind(indexNode, info.targetElement.key);
Pointer nextPointer = Base::indexPointer(indexNode, i);
Leaf lowerLeaf;
Index lowerIndex;
if (Base::indexLevel(indexNode) == 0) {
lowerLeaf = Base::loadLeaf(nextPointer);
modify(lowerLeaf, info);
} else {
lowerIndex = Base::loadIndex(nextPointer);
modify(lowerIndex, info);
}
if (info.state == Done)
return;
bool selfUpdated = false;
size_t left = 0;
size_t right = 0;
if (i != 0 && i == Base::indexPointerCount(indexNode) - 1) {
left = i - 1;
right = i;
} else {
left = i;
right = i + 1;
}
if (info.state == LeafNeedsJoin) {
if (Base::indexPointerCount(indexNode) < 2) {
// Don't have enough leaves to join, just do the pending update.
info.state = LeafNeedsUpdate;
} else {
Leaf leftLeaf;
Leaf rightLeaf;
if (left == i) {
leftLeaf = lowerLeaf;
rightLeaf = Base::loadLeaf(Base::indexPointer(indexNode, right));
} else {
leftLeaf = Base::loadLeaf(Base::indexPointer(indexNode, left));
rightLeaf = lowerLeaf;
}
if (!Base::leafShift(leftLeaf, rightLeaf)) {
// Leaves not modified, just do the pending update.
info.state = LeafNeedsUpdate;
} else if (Base::leafElementCount(rightLeaf) == 0) {
// Leaves merged.
Base::setNextLeaf(leftLeaf, Base::nextLeaf(rightLeaf));
Base::deleteLeaf(move(rightLeaf));
// Replace two sibling pointer elements with one pointing to merged
// leaf.
if (left != 0)
Base::indexUpdateKeyBefore(indexNode, left, Base::leafKey(leftLeaf, 0));
Base::indexUpdatePointer(indexNode, left, Base::storeLeaf(move(leftLeaf)));
Base::indexRemoveBefore(indexNode, right);
selfUpdated = true;
} else {
// Leaves shifted.
Base::indexUpdatePointer(indexNode, left, Base::storeLeaf(move(leftLeaf)));
// Right leaf first key changes on shift, so always need to update
// left index node.
Base::indexUpdateKeyBefore(indexNode, right, Base::leafKey(rightLeaf, 0));
Base::indexUpdatePointer(indexNode, right, Base::storeLeaf(move(rightLeaf)));
selfUpdated = true;
}
}
}
if (info.state == IndexNeedsJoin) {
if (Base::indexPointerCount(indexNode) < 2) {
// Don't have enough indexes to join, just do the pending update.
info.state = IndexNeedsUpdate;
} else {
Index leftIndex;
Index rightIndex;
if (left == i) {
leftIndex = lowerIndex;
rightIndex = Base::loadIndex(Base::indexPointer(indexNode, right));
} else {
leftIndex = Base::loadIndex(Base::indexPointer(indexNode, left));
rightIndex = lowerIndex;
}
if (!Base::indexShift(leftIndex, getLeftKey(rightIndex), rightIndex)) {
// Indexes not modified, just do the pending update.
info.state = IndexNeedsUpdate;
} else if (Base::indexPointerCount(rightIndex) == 0) {
// Indexes merged.
Base::deleteIndex(move(rightIndex));
// Replace two sibling pointer elements with one pointing to merged
// index.
if (left != 0)
Base::indexUpdateKeyBefore(indexNode, left, getLeftKey(leftIndex));
Base::indexUpdatePointer(indexNode, left, Base::storeIndex(move(leftIndex)));
Base::indexRemoveBefore(indexNode, right);
selfUpdated = true;
} else {
// Indexes shifted.
Base::indexUpdatePointer(indexNode, left, Base::storeIndex(move(leftIndex)));
// Right index first key changes on shift, so always need to update
// right index node.
Key keyForRight = getLeftKey(rightIndex);
Base::indexUpdatePointer(indexNode, right, Base::storeIndex(move(rightIndex)));
Base::indexUpdateKeyBefore(indexNode, right, keyForRight);
selfUpdated = true;
}
}
}
if (info.state == LeafSplit) {
Base::indexUpdatePointer(indexNode, i, Base::storeLeaf(move(lowerLeaf)));
Base::indexInsertAfter(indexNode, i, info.newKey, info.newPointer);
selfUpdated = true;
}
if (info.state == IndexSplit) {
Base::indexUpdatePointer(indexNode, i, Base::storeIndex(move(lowerIndex)));
Base::indexInsertAfter(indexNode, i, info.newKey, info.newPointer);
selfUpdated = true;
}
if (info.state == LeafNeedsUpdate) {
Pointer lowerLeafPointer = Base::storeLeaf(move(lowerLeaf));
if (lowerLeafPointer != Base::indexPointer(indexNode, i)) {
Base::indexUpdatePointer(indexNode, i, lowerLeafPointer);
selfUpdated = true;
}
}
if (info.state == IndexNeedsUpdate) {
Pointer lowerIndexPointer = Base::storeIndex(move(lowerIndex));
if (lowerIndexPointer != Base::indexPointer(indexNode, i)) {
Base::indexUpdatePointer(indexNode, i, lowerIndexPointer);
selfUpdated = true;
}
}
auto splitResult = Base::indexSplit(indexNode);
if (splitResult) {
info.newKey = splitResult->first;
info.newPointer = Base::storeIndex(splitResult.take().second);
info.state = IndexSplit;
selfUpdated = true;
} else if (Base::indexNeedsShift(indexNode)) {
info.state = IndexNeedsJoin;
} else if (selfUpdated) {
info.state = IndexNeedsUpdate;
} else {
info.state = Done;
}
}
template <typename Base>
bool BTreeMixin<Base>::modify(DataElement e, ModifyAction action) {
ModifyInfo info(action, move(e));
Leaf lowerLeaf;
Index lowerIndex;
if (Base::rootIsLeaf()) {
lowerLeaf = Base::loadLeaf(Base::rootPointer());
modify(lowerLeaf, info);
} else {
lowerIndex = Base::loadIndex(Base::rootPointer());
modify(lowerIndex, info);
}
if (info.state == IndexNeedsJoin) {
if (Base::indexPointerCount(lowerIndex) == 1) {
// If root index has single pointer, then make that the new root.
// release index first (to support the common use case of delaying
// removes until setNewRoot)
Pointer pointer = Base::indexPointer(lowerIndex, 0);
size_t level = Base::indexLevel(lowerIndex);
Base::deleteIndex(move(lowerIndex));
Base::setNewRoot(pointer, level == 0);
} else {
// Else just update.
info.state = IndexNeedsUpdate;
}
}
if (info.state == LeafNeedsJoin) {
// Ignore NeedsJoin on LeafNode root, just update.
info.state = LeafNeedsUpdate;
}
if (info.state == LeafSplit || info.state == IndexSplit) {
Index newRoot;
if (info.state == IndexSplit) {
auto rootIndexLevel = Base::indexLevel(lowerIndex) + 1;
newRoot = Base::createIndex(Base::storeIndex(move(lowerIndex)));
Base::setIndexLevel(newRoot, rootIndexLevel);
} else {
newRoot = Base::createIndex(Base::storeLeaf(move(lowerLeaf)));
Base::setIndexLevel(newRoot, 0);
}
Base::indexInsertAfter(newRoot, 0, info.newKey, info.newPointer);
Base::setNewRoot(Base::storeIndex(move(newRoot)), false);
}
if (info.state == IndexNeedsUpdate) {
Pointer newRootPointer = Base::storeIndex(move(lowerIndex));
if (newRootPointer != Base::rootPointer())
Base::setNewRoot(newRootPointer, false);
}
if (info.state == LeafNeedsUpdate) {
Pointer newRootPointer = Base::storeLeaf(move(lowerLeaf));
if (newRootPointer != Base::rootPointer())
Base::setNewRoot(newRootPointer, true);
}
return info.found;
}
template <typename Base>
auto BTreeMixin<Base>::getLeftKey(Index const& index) -> Key {
if (Base::indexLevel(index) == 0) {
Leaf leaf = Base::loadLeaf(Base::indexPointer(index, 0));
return Base::leafKey(leaf, 0);
} else {
return getLeftKey(Base::loadIndex(Base::indexPointer(index, 0)));
}
}
template <typename Base>
template <typename Visitor>
void BTreeMixin<Base>::forAllNodes(Index const& index, Visitor&& visitor) {
if (!visitor(index))
return;
for (size_t i = 0; i < Base::indexPointerCount(index); ++i) {
if (Base::indexLevel(index) != 0) {
forAllNodes(Base::loadIndex(Base::indexPointer(index, i)), forward<Visitor>(visitor));
} else {
if (!visitor(Base::loadLeaf(Base::indexPointer(index, i))))
return;
}
}
}
template <typename Base>
pair<size_t, bool> BTreeMixin<Base>::leafFind(Leaf const& leaf, Key const& key) {
// Return lower bound binary search result.
size_t size = Base::leafElementCount(leaf);
if (size == 0)
return {0, false};
size_t len = size;
size_t first = 0;
size_t middle = 0;
size_t half;
while (len > 0) {
half = len / 2;
middle = first + half;
if (Base::leafKey(leaf, middle) < key) {
first = middle + 1;
len = len - half - 1;
} else {
len = half;
}
}
return make_pair(first, first < size && !(key < Base::leafKey(leaf, first)));
}
template <typename Base>
size_t BTreeMixin<Base>::indexFind(Index const& index, Key const& key) {
// Return upper bound binary search result of range [1, size];
size_t size = Base::indexPointerCount(index);
if (size == 0)
return 0;
size_t len = size - 1;
size_t first = 1;
size_t middle = 1;
size_t half;
while (len > 0) {
half = len / 2;
middle = first + half;
if (key < Base::indexKeyBefore(index, middle)) {
len = half;
} else {
first = middle + 1;
len = len - half - 1;
}
}
return first - 1;
}
}
#endif