osb/source/game/StarSky.cpp

655 lines
20 KiB
C++
Raw Normal View History

2023-06-20 04:33:09 +00:00
#include "StarSky.hpp"
#include "StarJsonExtra.hpp"
#include "StarDataStreamExtra.hpp"
#include "StarRoot.hpp"
#include "StarCelestialDatabase.hpp"
#include "StarCelestialGraphics.hpp"
#include "StarAssets.hpp"
#include "StarTime.hpp"
#include "StarRandomPoint.hpp"
#include "StarMixer.hpp"
#include "StarCompression.hpp"
namespace Star {
Sky::Sky() {
m_settings = Root::singleton().assets()->json("/sky.config");
m_starFrames = m_settings.queryInt("stars.frames");
m_starList = jsonToStringList(m_settings.query("stars.list"));
m_hyperStarList = jsonToStringList(m_settings.query("stars.hyperlist"));
m_netInit = false;
m_netGroup.addNetElement(&m_skyParametersNetState);
m_netGroup.addNetElement(&m_skyTypeNetState);
m_netGroup.addNetElement(&m_timeNetState);
m_netGroup.addNetElement(&m_flyingTypeNetState);
m_netGroup.addNetElement(&m_enterHyperspaceNetState);
m_netGroup.addNetElement(&m_startInWarpNetState);
m_netGroup.addNetElement(&m_worldMoveNetState);
m_netGroup.addNetElement(&m_starMoveNetState);
m_netGroup.addNetElement(&m_warpPhaseNetState);
m_netGroup.addNetElement(&m_flyingTimerNetState);
m_netGroup.setNeedsLoadCallback(bind(&Sky::readNetStates, this));
m_netGroup.setNeedsStoreCallback(bind(&Sky::writeNetStates, this));
}
Sky::Sky(SkyParameters const& skyParameters, bool inOrbit) : Sky() {
m_skyParameters = skyParameters;
m_skyParametersUpdated = true;
if (inOrbit)
m_skyType = SkyType::Orbital;
else
m_skyType = m_skyParameters.skyType;
}
void Sky::startFlying(bool enterHyperspace, bool startInWarp) {
if (startInWarp)
m_flyingType = FlyingType::Warp;
else
m_flyingType = FlyingType::Disembarking;
m_flyingTimer = 0;
m_enterHyperspace = enterHyperspace;
m_startInWarp = startInWarp;
}
void Sky::stopFlyingAt(Maybe<SkyParameters> dest) {
m_destWorld = dest;
}
void Sky::jumpTo(SkyParameters skyParameters) {
m_skyParameters = skyParameters;
m_skyParametersUpdated = true;
}
pair<ByteArray, uint64_t> Sky::writeUpdate(uint64_t fromVersion) {
return m_netGroup.writeNetState(fromVersion);
}
void Sky::readUpdate(ByteArray data) {
m_netGroup.readNetState(std::move(data));
2023-06-20 04:33:09 +00:00
}
void Sky::stateUpdate() {
if (m_lastFlyingType != m_flyingType) {
m_flyingTimer = 0.0f;
if (m_flyingType == FlyingType::Warp) {
m_warpPhase = WarpPhase::SpeedingUp;
if (m_startInWarp) {
if (m_enterHyperspace)
m_warpPhase = WarpPhase::Maintain;
else
m_flyingTimer = speedupTime();
m_lastWarpPhase = m_warpPhase;
}
float maxVelocity = m_settings.queryFloat("flyMaxVelocity");
m_worldMoveOffset = Vec2F::withAngle(m_pathRotation, maxVelocity / 2.0 * speedupTime());
m_starMoveOffset = Vec2F::withAngle(0, (maxVelocity * m_settings.queryFloat("starVelocityFactor")) / 2.0 * speedupTime());
} else if (m_flyingType == FlyingType::Arriving) {
m_sentSFX = false;
m_worldOffset = {};
m_starOffset = {};
}
}
if (m_lastWarpPhase != m_warpPhase) {
m_flyingTimer = 0.0f;
if (m_warpPhase == WarpPhase::SpeedingUp)
m_sentSFX = false;
else if (m_warpPhase == WarpPhase::Maintain)
enterHyperspace();
else if (m_warpPhase == WarpPhase::SlowingDown)
exitHyperspace();
}
m_lastFlyingType = m_flyingType;
m_lastWarpPhase = m_warpPhase;
}
void Sky::update(double dt) {
2023-06-20 04:33:09 +00:00
if (m_referenceClock) {
m_time = m_referenceClock->time();
if (!m_clockTrackingTime) {
m_clockTrackingTime = m_time;
} else {
// If our reference clock is set, and we have a valid tracking time, then
// the dt should be driven by the reference clock.
dt = m_time - *m_clockTrackingTime;
m_clockTrackingTime = m_time;
}
} else {
m_time += dt;
}
m_flashTimer = std::max(0.0, m_flashTimer - dt);
if (flying()) {
m_flyingTimer += dt;
if (m_flyingType == FlyingType::Disembarking) {
bool finished;
if (m_skyParameters.skyType == SkyType::Space)
finished = controlledMovement(m_settings.getArray("spaceDisembarkPath"), m_settings.get("spaceDisembarkOrigin"), m_flyingTimer);
else
finished = controlledMovement(m_settings.getArray("disembarkPath"), m_settings.get("disembarkOrigin"), m_flyingTimer);
if (finished) {
m_flyingType = FlyingType::Warp;
}
} else if (m_flyingType == FlyingType::Arriving) {
bool finished;
if (m_skyParameters.skyType == SkyType::Space)
finished = controlledMovement(m_settings.getArray("spaceArrivalPath"), m_settings.get("spaceArrivalOrigin"), m_flyingTimer);
else
finished = controlledMovement(m_settings.getArray("arrivalPath"), m_settings.get("arrivalOrigin"), m_flyingTimer);
if (finished) {
m_flyingType = FlyingType::None;
}
m_starOffset -= m_starOffset * m_settings.queryFloat("correctionPower");
m_worldOffset -= m_worldOffset * m_settings.queryFloat("correctionPower");
} else if (m_flyingType == FlyingType::Warp) {
float percentage = 0.0;
float dir = (int)m_warpPhase < 0 ? -1.0 : 1.0;
if (m_warpPhase == WarpPhase::SpeedingUp)
percentage = powf(m_flyingTimer / speedupTime(), 2.0);
else if (m_warpPhase == WarpPhase::Maintain)
percentage = 1.0;
else if (m_warpPhase == WarpPhase::SlowingDown)
percentage = powf(1 - m_flyingTimer / slowdownTime(), 2.0);
if (percentage < 1.0) {
m_starOffset = (dir * m_starMoveOffset * percentage).rotate(-getStarRotation());
m_worldOffset = (dir * m_worldMoveOffset * percentage).rotate(-getWorldRotation());
} else {
m_starOffset += Vec2F::withAngle(-getStarRotation(), m_settings.queryFloat("flyMaxVelocity") * dt * m_settings.queryFloat("starVelocityFactor"));
m_worldOffset = m_worldMoveOffset;
}
if (m_warpPhase == WarpPhase::SpeedingUp && m_flyingTimer >= speedupTime()
&& !m_enterHyperspace
&& m_destWorld) {
jumpTo(m_destWorld.take());
m_warpPhase = WarpPhase::SlowingDown;
} else if (m_warpPhase == WarpPhase::SpeedingUp && m_flyingTimer >= speedupTime() && m_enterHyperspace) {
m_warpPhase = WarpPhase::Maintain;
} else if (m_warpPhase == WarpPhase::Maintain && m_flyingTimer >= m_settings.queryFloat("flyingTimer")
&& m_destWorld) {
jumpTo(m_destWorld.take());
m_warpPhase = WarpPhase::SlowingDown;
} else if (m_warpPhase == WarpPhase::SlowingDown && m_flyingTimer >= slowdownTime()) {
m_flyingType = FlyingType::Arriving;
}
}
} else {
m_starOffset = {};
m_worldOffset = {};
m_pathOffset = {};
m_worldRotation = m_pathRotation = 0;
}
stateUpdate();
if (!flying())
m_starRotation = constrainAngle(m_starRotation + dt / dayLength() * 2 * Constants::pi);
else
m_starRotation = 0;
}
void Sky::setType(SkyType skyType) {
m_skyType = skyType;
}
SkyType Sky::type() const {
return m_skyType;
}
bool Sky::inSpace() const {
return m_skyType == SkyType::Orbital || m_skyType == SkyType::Warp || m_skyType == SkyType::Space;
}
uint64_t Sky::seed() const {
return m_skyParameters.seed;
}
float Sky::dayLength() const {
return m_skyParameters.dayLength.value(DefaultDayLength);
}
uint32_t Sky::day() const {
if (!m_skyParameters.dayLength)
return 0;
return floor(epochTime() / dayLength());
}
float Sky::timeOfDay() const {
if (!m_skyParameters.dayLength)
return 0;
return fmod(epochTime(), (double)dayLength());
}
double Sky::epochTime() const {
return m_time;
}
void Sky::setEpochTime(double epochTime) {
m_time = epochTime;
}
float Sky::altitude() const {
return m_altitude;
}
void Sky::setAltitude(float altitude) {
m_altitude = altitude;
}
void Sky::setReferenceClock(ClockConstPtr const& referenceClock) {
m_referenceClock = referenceClock;
m_time = m_referenceClock->time();
m_clockTrackingTime = {};
}
ClockConstPtr Sky::referenceClock() const {
return m_referenceClock;
}
String Sky::ambientNoise() const {
if (flying()) {
if (m_flyingType == FlyingType::Warp && m_warpPhase == WarpPhase::Maintain) {
return m_settings.queryString("hyperspaceAudio");
} else {
return m_settings.queryString("engineAudio");
}
}
return "";
}
List<AudioInstancePtr> Sky::pullSounds() {
List<AudioInstancePtr> res;
if (m_flyingType == FlyingType::Warp) {
if (m_warpPhase == WarpPhase::SpeedingUp && !m_sentSFX) {
float triggerTime = speedupTime() - m_settings.queryFloat("enterHyperspaceAudioLeadIn");
if (triggerTime < 0 || !m_enterHyperspace) {
m_sentSFX = true;
return res;
}
if (m_flyingTimer >= triggerTime) {
auto assets = Root::singleton().assets();
auto SFX = assets->audio(m_settings.queryString("enterHyperspaceAudio"));
m_sentSFX = true;
res.append(make_shared<AudioInstance>(*SFX));
return res;
}
} else if (m_warpPhase == WarpPhase::Maintain && !m_sentSFX) {
float triggerTime = m_settings.queryFloat("flyingTimer") - m_settings.queryFloat("exitHyperspaceAudioLeadIn");
if (triggerTime < 0) {
m_sentSFX = true;
return res;
}
if (m_flyingTimer >= triggerTime) {
auto assets = Root::singleton().assets();
auto SFX = assets->audio(m_settings.queryString("exitHyperspaceAudio"));
m_sentSFX = true;
res.append(make_shared<AudioInstance>(*SFX));
return res;
}
}
} else if (m_flyingType == FlyingType::Arriving) {
if (!m_sentSFX) {
auto assets = Root::singleton().assets();
auto SFX = assets->audio(m_settings.queryString("arrivalAudio"));
m_sentSFX = true;
res.append(make_shared<AudioInstance>(*SFX));
return res;
}
}
return res;
}
float Sky::spaceLevel() const {
if (type() == SkyType::Atmospheric && m_skyParameters.spaceLevel && m_skyParameters.surfaceLevel) {
float altitudeRange = *m_skyParameters.spaceLevel - *m_skyParameters.surfaceLevel;
float relativeAltitude = m_altitude - *m_skyParameters.surfaceLevel;
return clamp(relativeAltitude / altitudeRange, 0.0f, 1.0f);
}
return 1.0f;
}
float Sky::orbitAngle() const {
// TODO: What should we do here? Used to divide by zero. Now is saved by
// DefaultDayLength, but it's a hack
return 2 * Constants::pi * timeOfDay() / dayLength();
}
bool Sky::isDayTime() const {
return dayLevel() >= 0.5;
}
float Sky::dayLevel() const {
// Turn the dayCycle value into a value that blends evenly between 0.0 at
// mid-night and 1.0 at mid-day and then back again.
float dayCycle = Sky::dayCycle();
if (dayCycle < 1.0)
return dayCycle / 2 + 0.5f;
else if (dayCycle > 3.0)
return (dayCycle - 3) / 2;
else
return 1.0 - (dayCycle - 1.0) / 2;
}
float Sky::dayCycle() const {
// Always middle of the night in orbit or warp space.
if (type() == SkyType::Orbital || type() == SkyType::Warp)
return 3.0f;
// This will misbehave badly if dayTransitionTime is greater than dayLength /
// 2
float transitionTime = m_settings.queryFloat("dayTransitionTime") / 2;
float dayLength = Sky::dayLength();
float timeOfDay = Sky::timeOfDay();
// timeOfDay() is defined such that 0.0 is mid-dawn. For convenience, shift
// the time of day forwards such that 0.0 is the beginning of the morning.
float shiftedTime = pfmod(timeOfDay + transitionTime / 2, dayLength);
// There are 5 times here, beginning of the morning, end of the morning,
// beginning of the evening, end of the evening, and then the beginning of
// the morning again (wrapping around).
Array<float, 5> transitionPositions = {
0.0f, transitionTime, dayLength / 2, dayLength / 2 + transitionTime, dayLength};
// The values here are mid-night, mid-day, mid-day, mid-night, mid-night.
Array<float, 5> transitionValues = {-1.0f, 1.0f, 1.0f, 3.0f, 3.0f};
return pfmod(parametricInterpolate2(
transitionPositions, transitionValues, shiftedTime, SinWeightOperator<float>(), BoundMode::Clamp),
4.0f);
}
float Sky::skyAlpha() const {
if (m_skyType != SkyType::Atmospheric) {
return 0.0f;
} else {
float skyLevel = 1.0f - spaceLevel();
return clamp(pow(skyLevel, m_settings.getFloat("skyLevelExponent")), 0.0f, 1.0f);
}
}
Color Sky::environmentLight() const {
if (m_skyType == SkyType::Orbital || m_skyType == SkyType::Warp)
return Color::Black;
if (m_skyParameters.skyColoring.isLeft()) {
auto skyColoring = m_skyParameters.skyColoring.left();
Array<Vec4F, 4> colors;
colors[0] = skyColoring.morningLightColor.toRgbaF();
colors[1] = skyColoring.dayLightColor.toRgbaF();
colors[2] = skyColoring.eveningLightColor.toRgbaF();
colors[3] = skyColoring.nightLightColor.toRgbaF();
return Color::rgbaf(listInterpolate2(colors, dayCycle(), SinWeightOperator<float>(), BoundMode::Wrap));
} else {
return m_skyParameters.skyColoring.right();
}
}
Color Sky::mainSkyColor() const {
if (m_skyParameters.skyColoring.isLeft())
return m_skyParameters.skyColoring.left().mainColor;
return Color::Black;
}
pair<Color, Color> Sky::skyRectColors() const {
if (m_skyParameters.skyColoring.isLeft()) {
auto skyColoring = m_skyParameters.skyColoring.left();
Array<Vec4F, 4> topColorList;
topColorList[0] = skyColoring.morningColors.first.toRgbaF();
topColorList[1] = skyColoring.dayColors.first.toRgbaF();
topColorList[2] = skyColoring.eveningColors.first.toRgbaF();
topColorList[3] = skyColoring.nightColors.first.toRgbaF();
Array<Vec4F, 4> bottomColorList;
bottomColorList[0] = skyColoring.morningColors.second.toRgbaF();
bottomColorList[1] = skyColoring.dayColors.second.toRgbaF();
bottomColorList[2] = skyColoring.eveningColors.second.toRgbaF();
bottomColorList[3] = skyColoring.nightColors.second.toRgbaF();
float cycle = dayCycle();
auto topColor = Color::rgbaf(listInterpolate2(topColorList, cycle, SinWeightOperator<float>(), BoundMode::Wrap));
auto bottomColor = Color::rgbaf(listInterpolate2(bottomColorList, cycle, SinWeightOperator<float>(), BoundMode::Wrap));
float skyAlpha = Sky::skyAlpha();
topColor.setAlpha(topColor.alpha() * skyAlpha);
bottomColor.setAlpha(bottomColor.alpha() * skyAlpha);
return {topColor, bottomColor};
}
return {Color::Clear, Color::Clear};
}
Color Sky::skyFlashColor() const {
Color res = Color::White;
res.setAlphaF(m_flashTimer / m_settings.queryFloat("flashTimer"));
return res;
}
bool Sky::flying() const {
if (m_flyingType == FlyingType::None)
return false;
return true;
}
FlyingType Sky::flyingType() const {
return m_flyingType;
}
float Sky::warpProgress() const {
if (m_flyingType == FlyingType::Warp) {
auto warpTime = speedupTime() + m_settings.queryFloat("flyingTimer") + slowdownTime();
auto timer = m_flyingTimer;
if (m_warpPhase < WarpPhase::SpeedingUp)
timer += speedupTime();
if (m_warpPhase < WarpPhase::Maintain)
timer += m_settings.queryFloat("flyingTimer");
return timer / warpTime;
}
return 0.0;
}
WarpPhase Sky::warpPhase() const {
return m_warpPhase;
}
bool Sky::inHyperspace() const {
return m_flyingType == FlyingType::Warp && m_enterHyperspace;
}
SkyRenderData Sky::renderData() const {
SkyRenderData renderData;
renderData.settings = m_settings;
renderData.skyParameters = m_skyParameters;
renderData.type = m_skyType;
renderData.dayLevel = dayLevel();
renderData.skyAlpha = skyAlpha();
renderData.dayLength = dayLength();
renderData.timeOfDay = timeOfDay();
renderData.epochTime = epochTime();
renderData.starOffset = getStarOffset();
renderData.starRotation = getStarRotation();
renderData.worldOffset = getWorldOffset();
renderData.worldRotation = getWorldRotation();
renderData.orbitAngle = orbitAngle();
renderData.starFrames = m_starFrames;
renderData.starList = m_starList;
renderData.hyperStarList = m_hyperStarList;
renderData.environmentLight = environmentLight();
renderData.mainSkyColor = mainSkyColor();
tie(renderData.topRectColor, renderData.bottomRectColor) = skyRectColors();
renderData.flashColor = skyFlashColor();
return renderData;
}
void Sky::writeNetStates() {
if (take(m_skyParametersUpdated))
m_skyParametersNetState.set(DataStreamBuffer::serialize<Json>(m_skyParameters.toJson()));
m_skyTypeNetState.set((int)m_skyType);
m_timeNetState.set(m_time);
m_enterHyperspaceNetState.set(m_enterHyperspace);
m_startInWarpNetState.set(m_startInWarp);
m_flyingTypeNetState.set((unsigned)m_flyingType);
m_warpPhaseNetState.set((int)m_warpPhase);
m_flyingTimerNetState.set(m_flyingTimer);
m_worldMoveNetState.set(m_worldMoveOffset);
m_starMoveNetState.set(m_starMoveOffset);
}
void Sky::readNetStates() {
if (m_skyParametersNetState.pullUpdated())
m_skyParameters = SkyParameters(DataStreamBuffer::deserialize<Json>(m_skyParametersNetState.get()));
m_skyType = (SkyType)m_skyTypeNetState.get();
m_time = m_timeNetState.get();
m_enterHyperspace = m_enterHyperspaceNetState.get();
m_startInWarp = m_startInWarpNetState.get();
m_flyingType = (FlyingType)m_flyingTypeNetState.get();
m_warpPhase = (WarpPhase)m_warpPhaseNetState.get();
stateUpdate();
if (!m_netInit) {
m_netInit = true;
m_flyingTimer = m_flyingTimerNetState.get();
m_worldMoveOffset = m_worldMoveNetState.get();
m_starMoveOffset = m_starMoveNetState.get();
}
}
void Sky::enterHyperspace() {
m_flashTimer = m_settings.queryFloat("flashTimer");
setType(SkyType::Warp);
m_sentSFX = false;
}
void Sky::exitHyperspace() {
m_flashTimer = m_settings.queryFloat("flashTimer");
setType(SkyType::Orbital);
m_sentSFX = false;
Json originMap;
Json destMap;
if (m_skyParameters.skyType == SkyType::Space) {
originMap = m_settings.getObject("spaceArrivalOrigin");
destMap = m_settings.getArray("spaceArrivalPath")[0];
} else {
originMap = m_settings.getObject("arrivalOrigin");
destMap = m_settings.getArray("arrivalPath")[0];
}
m_pathOffset = jsonToVec2F(originMap.get("offset"));
m_pathRotation = originMap.get("rotation").toFloat() * Constants::deg2rad;
float maxVelocity = m_settings.queryFloat("flyMaxVelocity");
float exitDistance = maxVelocity / 2.0 * slowdownTime();
m_worldMoveOffset = Vec2F::withAngle(0, exitDistance);
m_worldOffset = m_worldMoveOffset;
exitDistance = (maxVelocity * m_settings.queryFloat("starVelocityFactor")) / 2.0 * slowdownTime();
m_starMoveOffset = Vec2F::withAngle(0, exitDistance);
m_starOffset = m_starMoveOffset;
m_worldRotation = m_starRotation = 0;
m_flyingTimer = 0;
}
bool Sky::controlledMovement(JsonArray const& path, Json const& origin, float timeOffset) {
float previousTime = 0;
Vec2F previousOffset = jsonToVec2F(origin.get("offset"));
float previousRotation = origin.getFloat("rotation") * Constants::deg2rad;
float stepTime = 0;
Vec2F stepOffset;
float stepRotation;
for (auto const& entry : path) {
stepOffset = jsonToVec2F(entry.get("offset"));
stepRotation = entry.getFloat("rotation") * Constants::deg2rad;
stepTime += entry.getFloat("time");
if (timeOffset <= stepTime) {
float percentage = (timeOffset - previousTime) / (stepTime - previousTime);
m_pathOffset = lerp(percentage, previousOffset, stepOffset);
m_pathRotation = lerp(percentage, previousRotation, stepRotation);
return false;
}
previousTime = stepTime;
previousOffset = stepOffset;
previousRotation = stepRotation;
}
// if loop wasn't broken
// then we're done with this phase of controlled movement
// signal that we're ready to head out of this system
return true;
}
Vec2F Sky::getStarOffset() const {
return (m_starOffset + m_pathOffset);
}
float Sky::getStarRotation() const {
return m_starRotation + m_pathRotation;
}
Vec2F Sky::getWorldOffset() const {
return m_worldOffset + m_pathOffset;
}
float Sky::getWorldRotation() const {
return m_worldRotation + m_pathRotation;
}
float Sky::speedupTime() const {
if (m_enterHyperspace)
return m_settings.queryFloat("hyperspaceSpeedupTime");
else
return m_settings.queryFloat("speedupTime");
}
float Sky::slowdownTime() const {
if (m_enterHyperspace)
return m_settings.queryFloat("hyperspaceSlowdownTime");
else
return m_settings.queryFloat("slowdownTime");
}
}