osb/source/core/StarRect.hpp

1080 lines
28 KiB
C++
Raw Normal View History

2023-06-20 14:33:09 +10:00
#ifndef STAR_RECT_HPP
#define STAR_RECT_HPP
#include "StarLine.hpp"
#include "StarList.hpp"
namespace Star {
// Axis aligned box that can be used as a bounding volume.
template <typename T, size_t N>
class Box {
public:
typedef Vector<T, N> Coord;
typedef Star::Line<T, N> Line;
typedef typename Line::IntersectResult LineIntersectResult;
template <size_t P, typename T2 = void>
using Enable2D = typename std::enable_if<P == 2 && N == P, T2>::type;
struct IntersectResult {
// Whether or not the two objects intersect
bool intersects;
// How much *this* box must be moved in order to make them not intersect
// anymore
Coord overlap;
// Whether or not the intersection is touching only. No overlap.
bool glances;
};
static Box null();
static Box inf();
// Returns an integral aligned box that at least contains the given floating
// point box.
template <typename Box2>
static Box integral(Box2 const& box);
// Returns an integral aligned box that is equal to the given box rounded to
// the nearest whole number (does not necessarily contain the given box).
template <typename Box2>
static Box round(Box2 const& box);
template <typename... TN>
static Box boundBoxOf(TN const&... list);
template <typename Collection>
static Box boundBoxOfPoints(Collection const& collection);
static Box withSize(Coord const& min, Coord const& size);
static Box withCenter(Coord const& center, Coord const& size);
Box();
Box(Coord const& min, Coord const& max);
Box(Box const& b);
Box& operator=(Box const& b);
2023-06-20 14:33:09 +10:00
template <typename T2>
explicit Box(Box<T2, N> const& b);
// Is equal to null()
bool isNull() const;
// One or more dimensions are of negative magnitude
bool isNegative() const;
// One or more dimensions are of zero or negative magnitude
bool isEmpty() const;
// Sets the bounding box equal to one containing the given bounding box and
// the current one.
void combine(Box const& box);
Box combined(Box const& box) const;
// Sets the bounding box equal to one containing the current bounding box and
// the given point.
void combine(Coord const& point);
Box combined(Coord const& point) const;
// Sets the bounding box equal to the intersection of this one and the given
// one. If there is no intersection than the box becomes negative in that
// dimension.
void limit(Box const& box);
Box limited(Box const& box);
// If any range has a min < max, swap them to make it non-null.
void makePositive();
// Sets any empty (or negative) dimensions in the bounding box to the
// corresponding range in the given bounding box. If the bounding box is not
// empty in any dimension, then this has no effect.
void rangeSetIfEmpty(Box const& b);
Coord size() const;
T size(size_t dim) const;
// Sets bound box to the minimum bound box necessary to both have the given
// aspect ratio and contain the current bounding box.
void setAspect(Coord as, bool shrink = false);
void makeCube();
Coord center() const;
void setCenter(Coord const& c);
void translate(Coord const& c);
Box translated(Coord const& c) const;
// Translate the Box the minimum distance so that it includes the given point
void translateToInclude(Coord const& coord, Coord const& padding = Coord());
Vector<T, 2> range(size_t dim) const;
void setRange(size_t dim, Vector<T, 2> v);
void combineRange(size_t dim, Vector<T, 2> v);
void limitRange(size_t dim, Vector<T, 2> v);
// Expand from center.
void expand(T factor);
Box expanded(T factor) const;
// Expand from center.
void expand(Coord const& factor);
Box expanded(Vector<T, N> const& factor) const;
// Scale around origin.
void scale(T factor);
Box scaled(T factor) const;
// Scale around origin.
void scale(Coord const& factor);
Box scaled(Vector<T, N> const& factor) const;
// Increase all dimensions by a constant amount on all sides
void pad(T amount);
Box padded(T amount) const;
// Increase all dimensions by a constant amount
void pad(Coord const& amount);
Box padded(Vector<T, N> const& amount) const;
// Opposite of pad
void trim(T amount);
Box trimmed(T amount) const;
// Opposite of pad
void trim(Coord const& amount);
Box trimmed(Vector<T, N> const& amount) const;
// Flip around some dimension (may make box have negative volume)
void flip(size_t dimension);
Box flipped(size_t dimension) const;
Coord const& min() const;
Coord const& max() const;
Coord& min();
Coord& max();
void setMin(Coord const& c);
void setMax(Coord const& c);
T volume() const;
Box overlap(Box const& b) const;
IntersectResult intersection(Box const& b) const;
bool intersects(Box const& b, bool includeEdges = true) const;
bool contains(Coord const& p, bool includeEdges = true) const;
bool contains(Box const& b, bool includeEdges = true) const;
// A version of contains that includes the min edges but not the max edges,
// useful to select based on adjoining boxes without overlap.
bool belongs(Coord const& p) const;
bool containsEpsilon(Coord const& p, unsigned epsilons = 2) const;
bool containsEpsilon(Box const& b, unsigned epsilons = 2) const;
bool operator==(Box const& ref) const;
bool operator!=(Box const& ref) const;
// Find Coord inside box nearest to
Coord nearestCoordTo(Coord const& c) const;
// Find the coord in normalized space for this rect, so that 0 is the minimum
// and 1 is the maximum.
Coord normal(Coord const& coord) const;
// The invers of normal, find the real space position of this normalized
// coordinate.
Coord eval(Coord const& normalizedCoord) const;
// 2D Only
// Slightly different to make ctor work
template <size_t P = N, class = Enable2D<P>>
Box(T minx, T miny, T maxx, T maxy);
template <size_t P = N>
Enable2D<P, T> xMin() const;
template <size_t P = N>
Enable2D<P, T> xMax() const;
template <size_t P = N>
Enable2D<P, T> yMin() const;
template <size_t P = N>
Enable2D<P, T> yMax() const;
template <size_t P = N>
Enable2D<P> setXMin(T xMin);
template <size_t P = N>
Enable2D<P> setXMax(T xMax);
template <size_t P = N>
Enable2D<P> setYMin(T yMin);
template <size_t P = N>
Enable2D<P> setYMax(T yMax);
template <size_t P = N>
Enable2D<P, T> width() const;
template <size_t P = N>
Enable2D<P, T> height() const;
template <size_t P = N>
Enable2D<P, void> translate(T x, T y);
template <size_t P = N>
Enable2D<P, void> translateToInclude(T x, T y, T xPadding = 0, T yPadding = 0);
template <size_t P = N>
Enable2D<P, void> scale(T x, T y);
template <size_t P = N>
Enable2D<P, void> expand(T x, T y);
template <size_t P = N>
Enable2D<P, void> flipHorizontal();
template <size_t P = N>
Enable2D<P, void> flipVertical();
template <size_t P = N>
Enable2D<P, Array<Line, 4>> edges() const;
template <size_t P = N>
Enable2D<P, bool> intersects(Line const& l) const;
template <size_t P = N>
Enable2D<P, bool> intersectsCircle(Coord const& position, T radius) const;
template <size_t P = N>
Enable2D<P, LineIntersectResult> edgeIntersection(Line const& l) const;
// Returns a list of areas that are in this rect but not in the given rect.
// Extra Credit: Implement this method for arbitrary dimensions.
template <size_t P = N>
Enable2D<P, List<Box>> subtract(Box const& rect) const;
protected:
template <typename... TN>
static void combineThings(Box& b, Coord const& point, TN const&... rest);
template <typename... TN>
static void combineThings(Box& b, Box const& box, TN const&... rest);
template <typename... TN>
static void combineThings(Box& b);
Coord m_min;
Coord m_max;
};
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& os, Box<T, N> const& box);
template<typename T>
using Rect = Box<T, 2>;
typedef Rect<int> RectI;
typedef Rect<unsigned> RectU;
typedef Rect<float> RectF;
typedef Rect<double> RectD;
template <typename T, size_t N>
Box<T, N> Box<T, N>::null() {
return Box(Coord::filled(std::numeric_limits<T>::max()), Coord::filled(std::numeric_limits<T>::lowest()));
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::inf() {
return Box(Coord::filled(std::numeric_limits<T>::lowest()), Coord::filled(std::numeric_limits<T>::max()));
}
template <typename T, size_t N>
template <typename Box2>
Box<T, N> Box<T, N>::integral(Box2 const& box) {
return Box(Coord::floor(box.min()), Coord::ceil(box.max()));
}
template <typename T, size_t N>
template <typename Box2>
Box<T, N> Box<T, N>::round(Box2 const& box) {
return Box(Coord::round(box.min()), Coord::round(box.max()));
}
template <typename T, size_t N>
template <typename... TN>
Box<T, N> Box<T, N>::boundBoxOf(TN const&... list) {
Box b = null();
combineThings(b, list...);
return b;
}
template <typename T, size_t N>
template <typename Collection>
Box<T, N> Box<T, N>::boundBoxOfPoints(Collection const& collection) {
Box b = null();
for (auto const& point : collection)
b.combine(Coord(point));
return b;
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::withSize(Coord const& min, Coord const& size) {
return Box(min, min + size);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::withCenter(Coord const& center, Coord const& size) {
return Box(center - size / 2, center + size / 2);
}
template <typename T, size_t N>
Box<T, N>::Box() {}
template <typename T, size_t N>
Box<T, N>::Box(Coord const& min, Coord const& max)
: m_min(min), m_max(max) {}
template <typename T, size_t N>
Box<T, N>::Box(Box const& b)
: m_min(b.min()), m_max(b.max()) {}
template <typename T, size_t N>
Box<T, N>& Box<T, N>::operator=(Box<T, N> const& b) {
m_min = b.m_min;
m_max = b.m_max;
return *this;
}
2023-06-20 14:33:09 +10:00
template <typename T, size_t N>
template <typename T2>
Box<T, N>::Box(Box<T2, N> const& b)
: m_min(b.min()), m_max(b.max()) {}
template <typename T, size_t N>
bool Box<T, N>::isNull() const {
return m_min == Coord::filled(std::numeric_limits<T>::max())
&& m_max == Coord::filled(std::numeric_limits<T>::lowest());
}
template <typename T, size_t N>
bool Box<T, N>::isNegative() const {
for (size_t i = 0; i < N; ++i) {
if (m_max[i] < m_min[i])
return true;
}
return false;
}
template <typename T, size_t N>
bool Box<T, N>::isEmpty() const {
for (size_t i = 0; i < N; ++i) {
if (m_max[i] <= m_min[i])
return true;
}
return false;
}
template <typename T, size_t N>
void Box<T, N>::combine(Box const& box) {
m_min = box.m_min.piecewiseMin(m_min);
m_max = box.m_max.piecewiseMax(m_max);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::combined(Box const& box) const {
auto b = *this;
b.combine(box);
return b;
}
template <typename T, size_t N>
void Box<T, N>::combine(Coord const& point) {
m_min = m_min.piecewiseMin(point);
m_max = m_max.piecewiseMax(point);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::combined(Coord const& point) const {
auto b = *this;
b.combine(point);
return b;
}
template <typename T, size_t N>
void Box<T, N>::limit(Box const& box) {
m_min = m_min.piecewiseMax(box.m_min);
m_max = m_max.piecewiseMin(box.m_max);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::limited(Box const& box) {
auto b = *this;
b.limit(box);
return b;
}
template <typename T, size_t N>
void Box<T, N>::makePositive() {
for (size_t i = 0; i < N; ++i) {
if (m_max[i] < m_min[i])
std::swap(m_max[i], m_min[i]);
}
}
template <typename T, size_t N>
void Box<T, N>::rangeSetIfEmpty(Box const& b) {
for (size_t i = 0; i < N; ++i) {
if (m_max[i] <= m_min[i])
setRange(i, b.range(i));
}
}
template <typename T, size_t N>
void Box<T, N>::makeCube() {
setAspect(Coord::filled(1));
}
template <typename T, size_t N>
auto Box<T, N>::size() const -> Coord {
return m_max - m_min;
}
template <typename T, size_t N>
T Box<T, N>::size(size_t dim) const {
return m_max[dim] - m_min[dim];
}
template <typename T, size_t N>
void Box<T, N>::setAspect(Coord as, bool shrink) {
Coord nBox = (m_max - m_min).piecewiseDivide(as);
Coord extent;
if (shrink)
extent = Coord::filled(nBox.min());
else
extent = Coord::filled(nBox.max());
extent = extent.piecewiseMult(as);
Coord center = (m_max + m_min) / 2;
m_max = center + extent / 2;
m_min = center - extent / 2;
}
template <typename T, size_t N>
auto Box<T, N>::center() const -> Coord {
return (m_min + m_max) / 2;
}
template <typename T, size_t N>
void Box<T, N>::setCenter(Coord const& c) {
translate(c - center());
}
template <typename T, size_t N>
void Box<T, N>::translate(Coord const& c) {
m_min += c;
m_max += c;
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::translated(Coord const& c) const {
auto b = *this;
b.translate(c);
return b;
}
template <typename T, size_t N>
void Box<T, N>::translateToInclude(Coord const& coord, Coord const& padding) {
Coord translation;
for (size_t i = 0; i < N; ++i) {
if (coord[i] < m_min[i] + padding[i])
translation[i] = coord[i] - m_min[i] - padding[i];
else if (coord[i] > m_max[i] - padding[i])
translation[i] = coord[i] - m_max[i] + padding[i];
}
translate(translation);
}
template <typename T, size_t N>
Vector<T, 2> Box<T, N>::range(size_t dim) const {
return Coord(m_min[dim], m_max[dim]);
}
template <typename T, size_t N>
void Box<T, N>::setRange(size_t dim, Vector<T, 2> v) {
m_min[dim] = v[0];
m_max[dim] = v[1];
}
template <typename T, size_t N>
void Box<T, N>::combineRange(size_t dim, Vector<T, 2> v) {
m_min[dim] = std::min(m_min[dim], v[0]);
m_max[dim] = std::max(m_max[dim], v[1]);
}
template <typename T, size_t N>
void Box<T, N>::limitRange(size_t dim, Vector<T, 2> v) {
m_min[dim] = std::max(m_min[dim], v[0]);
m_max[dim] = std::min(m_max[dim], v[1]);
}
template <typename T, size_t N>
void Box<T, N>::expand(T factor) {
for (size_t i = 0; i < N; ++i) {
auto rng = range(i);
T center = rng.sum() / 2;
T newDist = (rng[1] - rng[0]) * factor;
setRange(i, Coord(center - newDist / 2, center + newDist / 2));
}
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::expanded(T factor) const {
auto b = *this;
b.expand(factor);
return b;
}
template <typename T, size_t N>
void Box<T, N>::expand(Coord const& factor) {
for (size_t i = 0; i < N; ++i) {
auto rng = range(i);
T center = rng.sum() / 2;
T newDist = (rng[1] - rng[0]) * factor[i];
setRange(i, Coord(center - newDist / 2, center + newDist / 2));
}
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::expanded(Coord const& factor) const {
auto b = *this;
b.expand(factor);
return b;
}
template <typename T, size_t N>
void Box<T, N>::scale(T factor) {
for (size_t i = 0; i < N; ++i)
setRange(i, range(i) * factor);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::scaled(T factor) const {
auto b = *this;
b.scale(factor);
return b;
}
template <typename T, size_t N>
void Box<T, N>::scale(Coord const& factor) {
for (size_t i = 0; i < N; ++i)
setRange(i, range(i) * factor[i]);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::scaled(Coord const& factor) const {
auto b = *this;
b.scale(factor);
return b;
}
template <typename T, size_t N>
void Box<T, N>::pad(T amount) {
for (size_t i = 0; i < N; ++i) {
m_min[i] -= amount;
m_max[i] += amount;
}
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::padded(T amount) const {
auto b = *this;
b.pad(amount);
return b;
}
template <typename T, size_t N>
void Box<T, N>::pad(Coord const& amount) {
for (size_t i = 0; i < N; ++i) {
m_min[i] -= amount[i];
m_max[i] += amount[i];
}
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::padded(Coord const& amount) const {
auto b = *this;
b.pad(amount);
return b;
}
template <typename T, size_t N>
void Box<T, N>::trim(T amount) {
pad(-amount);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::trimmed(T amount) const {
auto b = *this;
b.trim(amount);
return b;
}
template <typename T, size_t N>
void Box<T, N>::trim(Coord const& amount) {
pad(-amount);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::trimmed(Coord const& amount) const {
auto b = *this;
b.trim(amount);
return b;
}
template <typename T, size_t N>
void Box<T, N>::flip(size_t dimension) {
std::swap(m_min[dimension], m_max[dimension]);
}
template <typename T, size_t N>
Box<T, N> Box<T, N>::flipped(size_t dimension) const {
auto b = *this;
b.flip(dimension);
return b;
}
template <typename T, size_t N>
auto Box<T, N>::normal(Coord const& coord) const -> Coord {
return (coord - m_min).piecewiseDivide(m_max - m_min);
}
template <typename T, size_t N>
auto Box<T, N>::eval(Coord const& normalizedCoord) const -> Coord {
return normalizedCoord.piecewiseMultiply(m_max - m_min) + m_min;
}
template <typename T, size_t N>
auto Box<T, N>::min() const -> Coord const & {
return m_min;
}
template <typename T, size_t N>
auto Box<T, N>::max() const -> Coord const & {
return m_max;
}
template <typename T, size_t N>
auto Box<T, N>::min() -> Coord & {
return m_min;
}
template <typename T, size_t N>
auto Box<T, N>::max() -> Coord & {
return m_max;
}
template <typename T, size_t N>
void Box<T, N>::setMin(Coord const& c) {
m_min = c;
}
template <typename T, size_t N>
void Box<T, N>::setMax(Coord const& c) {
m_max = c;
}
template <typename T, size_t N>
T Box<T, N>::volume() const {
return size().product();
}
template <typename T, size_t N>
auto Box<T, N>::overlap(Box const& b) const -> Box {
Box result = *this;
for (size_t i = 0; i < N; ++i) {
result.m_min[i] = std::max(result.m_min[i], b.m_min[i]);
result.m_max[i] = std::min(result.m_max[i], b.m_max[i]);
}
return result;
}
template <typename T, size_t N>
auto Box<T, N>::intersection(Box const& b) const -> IntersectResult {
IntersectResult res;
T overlap = std::numeric_limits<T>::max();
size_t dim = 0;
bool negative = false;
for (size_t i = 0; i < N; ++i) {
if (m_max[i] - b.m_min[i] < overlap) {
overlap = m_max[i] - b.m_min[i];
dim = i;
negative = true;
}
if (b.m_max[i] - m_min[i] < overlap) {
overlap = b.m_max[i] - m_min[i];
dim = i;
negative = false;
}
}
res.overlap = Coord();
if (overlap > 0) {
res.intersects = true;
res.overlap[dim] = overlap;
} else {
res.intersects = false;
res.overlap[dim] = -overlap;
}
if (negative)
res.overlap = -res.overlap;
if (res.overlap == Coord()) {
res.glances = true;
} else {
res.glances = false;
}
return res;
}
template <typename T, size_t N>
bool Box<T, N>::intersects(Box const& b, bool includeEdges) const {
for (size_t i = 0; i < N; ++i) {
if (includeEdges) {
if (m_max[i] < b.m_min[i] || b.m_max[i] < m_min[i])
return false;
} else {
if (m_max[i] <= b.m_min[i] || b.m_max[i] <= m_min[i])
return false;
}
}
return true;
}
template <typename T, size_t N>
bool Box<T, N>::contains(Coord const& p, bool includeEdges) const {
for (size_t i = 0; i < N; ++i) {
if (includeEdges) {
if (p[i] < m_min[i] || p[i] > m_max[i])
return false;
} else {
if (p[i] <= m_min[i] || p[i] >= m_max[i])
return false;
}
}
return true;
}
template <typename T, size_t N>
bool Box<T, N>::contains(Box const& b, bool includeEdges) const {
return contains(b.min(), includeEdges) && contains(b.max(), includeEdges);
}
template <typename T, size_t N>
bool Box<T, N>::belongs(Coord const& p) const {
for (size_t i = 0; i < N; ++i) {
if (p[i] < m_min[i] || p[i] >= m_max[i])
return false;
}
return true;
}
template <typename T, size_t N>
bool Box<T, N>::containsEpsilon(Coord const& p, unsigned epsilons) const {
for (size_t i = 0; i < N; ++i) {
if (p[i] < m_min[i] || p[i] > m_max[i])
return false;
if (nearEqual(p[i], m_min[i], epsilons) || nearEqual(p[i], m_max[i], epsilons))
return false;
}
return true;
}
template <typename T, size_t N>
bool Box<T, N>::containsEpsilon(Box const& b, unsigned epsilons) const {
return containsEpsilon(b.min(), epsilons) && containsEpsilon(b.max(), epsilons);
}
template <typename T, size_t N>
bool Box<T, N>::operator==(Box const& ref) const {
return m_min == ref.m_min && m_max == ref.m_max;
}
template <typename T, size_t N>
bool Box<T, N>::operator!=(Box const& ref) const {
return m_min != ref.m_min || m_max != ref.m_max;
}
template <typename T, size_t N>
template <typename... TN>
void Box<T, N>::combineThings(Box& b, Coord const& point, TN const&... rest) {
b.combine(point);
combineThings(b, rest...);
}
template <typename T, size_t N>
template <typename... TN>
void Box<T, N>::combineThings(Box& b, Box const& box, TN const&... rest) {
b.combine(box);
combineThings(b, rest...);
}
template <typename T, size_t N>
template <typename... TN>
void Box<T, N>::combineThings(Box&) {}
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& os, Box<T, N> const& box) {
os << "Box{min:" << box.min() << " max:" << box.max() << "}";
return os;
}
template <typename T, size_t N>
template <size_t P, class>
Box<T, N>::Box(T minx, T miny, T maxx, T maxy)
: Box(Coord(minx, miny), Coord(maxx, maxy)) {}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::xMin() const -> Enable2D<P, T> {
return min()[0];
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::xMax() const -> Enable2D<P, T> {
return max()[0];
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::yMin() const -> Enable2D<P, T> {
return min()[1];
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::yMax() const -> Enable2D<P, T> {
return max()[1];
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::setXMin(T xMin) -> Enable2D<P> {
m_min[0] = xMin;
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::setXMax(T xMax) -> Enable2D<P> {
m_max[0] = xMax;
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::setYMin(T yMin) -> Enable2D<P> {
m_min[1] = yMin;
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::setYMax(T yMax) -> Enable2D<P> {
m_max[1] = yMax;
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::width() const -> Enable2D<P, T> {
return size(0);
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::height() const -> Enable2D<P, T> {
return size(1);
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::translate(T x, T y) -> Enable2D<P, void> {
translate(Coord(x, y));
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::translateToInclude(T x, T y, T xPadding, T yPadding) -> Enable2D<P, void> {
translateToInclude(Coord(x, y), Coord(xPadding, yPadding));
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::scale(T x, T y) -> Enable2D<P, void> {
scale(Coord(x, y));
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::expand(T x, T y) -> Enable2D<P, void> {
expand(Coord(x, y));
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::flipHorizontal() -> Enable2D<P, void> {
flip(0);
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::flipVertical() -> Enable2D<P, void> {
flip(1);
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::edges() const -> Enable2D<P, Array<Line, 4>> {
Array<Line, 4> res;
res[0] = {min(), {min()[0], max()[1]}};
res[1] = {min(), {max()[0], min()[1]}};
res[2] = {{min()[0], max()[1]}, max()};
res[3] = {{max()[0], min()[1]}, max()};
return res;
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::intersects(Line const& l) const -> Enable2D<P, bool> {
if (contains(l.min()) || contains(l.max()))
return true;
for (auto i : edges()) {
if (l.intersects(i))
return true;
}
return false;
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::intersectsCircle(Coord const& position, T radius) const -> Enable2D<P, bool> {
if (contains(position))
return true;
for (auto const& e : edges()) {
if (e.distanceTo(position) <= radius)
return true;
}
return false;
}
// returns the closest intersection point (from l.min())
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::edgeIntersection(Line const& l) const -> Enable2D<P, LineIntersectResult> {
Array<LineIntersectResult, 4> candidates;
size_t numCandidates = 0;
for (auto i : edges()) {
auto res = l.intersection(i);
if (res.intersects)
candidates[numCandidates++] = res;
}
// How glancing is determined
// There are a few possibilities
// if candidates is empty then no intersection, easy
// if there is only one candidate then there are two possibilities, glancing
// or not
// But! if an endpoint is inside the rect, not just on the edge then it's
// false
// if there are two candidates and at least one of them is not glancing then
// false
// if there are two candidates and at they're both glancing then there's a few
// possibilities
// first, the line cuts through the corner, we can detect this by seeing if
// the point is in the
// box but not on the edge
// second, the line cuts across the corner, this case is true
// third, the line coincides with one of the sides, this case is also true.
// if there are 3 candidates then two cases
// first, the line coincides with one of the sides, and glances off of the
// other two, true
// second, the line cuts through a corner and reaches the far side, false
// we can tell these apart by determining if any intersections coincide
// if there are 4 candidates then the only possible case is false (cutting
// through both corners
if (numCandidates != 0) {
std::sort(candidates.ptr(),
candidates.ptr() + numCandidates,
[&](LineIntersectResult const& a, LineIntersectResult const& b) { return a.t < b.t; });
if (numCandidates == 1) {
if (contains(l.min(), false) || contains(l.max(), false)) {
candidates[0].glances = false;
}
} else if (numCandidates == 2) {
if (contains(l.min(), false) || contains(l.max(), false)) {
candidates[0].glances = false;
} else if (contains(l.min()) && !candidates[1].glances) {
candidates[0].glances = false;
}
if (candidates[1].coincides) { // If we coincide on either consider it true
candidates[0].coincides = true;
}
} else if (numCandidates == 3) {
if (candidates[0].coincides || candidates[1].coincides || candidates[2].coincides) {
candidates[0].glances = true;
candidates[0].coincides = true;
} else {
candidates[0].glances = false;
}
} else {
candidates[0].glances = false;
candidates[0].coincides = false;
}
return candidates[0];
} else {
return LineIntersectResult();
}
}
template <typename T, size_t N>
template <size_t P>
auto Box<T, N>::subtract(Box const& rect) const -> Enable2D<P, List<Box>> {
List<Box> regions;
auto overlap = Box::overlap(rect);
if (overlap.isEmpty()) {
// If this rect doesn't overlap at all with the subtracted one, obviously
// the entire rect is new territory.
regions.append(*this);
} else {
// If there is overlap with this rect, we need to add the left, bottom,
// right, and top sections. These can overlap at the corners, so the left
// and right sections will take the lower / upper left and lower / upper
// right corners, and the top and bottom will be limited to the width of
// the overlap section.
if (xMin() < overlap.xMin())
regions.append(Box(xMin(), yMin(), overlap.xMin(), yMax()));
if (overlap.xMax() < xMax())
regions.append(Box(overlap.xMax(), yMin(), xMax(), yMax()));
if (yMin() < overlap.yMin())
regions.append(Box(rect.xMin(), yMin(), rect.xMax(), overlap.yMin()));
if (overlap.yMax() < yMax())
regions.append(Box(rect.xMin(), overlap.yMax(), rect.xMax(), yMax()));
}
return regions;
}
template <typename T, size_t N>
auto Box<T, N>::nearestCoordTo(Coord const& c) const -> Coord {
Coord result = c;
for (size_t i = 0; i < N; ++i)
result[i] = clamp(result[i], m_min[i], m_max[i]);
return result;
}
}
template <typename T, size_t N>
struct fmt::formatter<Star::Box<T, N>> : ostream_formatter {};
2023-06-20 14:33:09 +10:00
#endif