osb/source/game/StarPlatformerAStar.cpp

541 lines
21 KiB
C++
Raw Normal View History

2023-06-20 14:33:09 +10:00
#include "StarLogging.hpp"
#include "StarRandom.hpp"
#include "StarPlatformerAStar.hpp"
#include "StarWorld.hpp"
#include "StarLiquidTypes.hpp"
#include "StarJsonExtra.hpp"
namespace Star {
namespace PlatformerAStar {
// The desired spacing between nodes:
float const NodeGranularity = 1.f;
float const SimulateArcGranularity = 0.5f;
float const DefaultMaxDistance = 50.0f;
float const DefaultSmallJumpMultiplier = 0.75f;
float const DefaultJumpDropXMultiplier = 0.125f;
float const DefaultSwimCost = 40.0f;
float const DefaultJumpCost = 3.0f;
float const DefaultLiquidJumpCost = 10.0f;
float const DefaultDropCost = 3.0f;
float const DefaultMaxLandingVelocity = -5.0f;
// Bounding boxes are shrunk slightly to work around floating point rounding
// errors.
float const BoundBoxRoundingErrorScaling = 0.99f;
CollisionSet const CollisionSolid{CollisionKind::Null, CollisionKind::Slippery, CollisionKind::Block, CollisionKind::Slippery};
CollisionSet const CollisionFloorOnly{CollisionKind::Null, CollisionKind::Block, CollisionKind::Slippery, CollisionKind::Platform};
CollisionSet const CollisionDynamic{CollisionKind::Dynamic};
CollisionSet const CollisionAny{CollisionKind::Null,
CollisionKind::Platform,
CollisionKind::Dynamic,
CollisionKind::Slippery,
CollisionKind::Block};
PathFinder::PathFinder(World* world,
Vec2F searchFrom,
Vec2F searchTo,
ActorMovementParameters movementParameters,
Parameters searchParameters)
: m_world(world),
m_searchFrom(searchFrom),
m_searchTo(searchTo),
m_movementParams(std::move(movementParameters)),
m_searchParams(std::move(searchParameters)) {
2023-06-20 14:33:09 +10:00
initAStar();
}
PathFinder::PathFinder(PathFinder const& rhs) {
operator=(rhs);
}
PathFinder& PathFinder::operator=(PathFinder const& rhs) {
m_world = rhs.m_world;
m_searchFrom = rhs.m_searchFrom;
m_searchTo = rhs.m_searchTo;
m_movementParams = rhs.m_movementParams;
m_searchParams = rhs.m_searchParams;
initAStar();
return *this;
}
Maybe<bool> PathFinder::explore(Maybe<unsigned> maxExploreNodes) {
return m_astar->explore(maxExploreNodes);
}
Maybe<Path> const& PathFinder::result() const {
return m_astar->result();
}
void PathFinder::initAStar() {
auto heuristicCostFn = [this](Node const& fromNode, Node const& toNode) -> float {
return heuristicCost(fromNode.position, toNode.position);
};
auto goalReachedFn = [this](Node const& node) -> bool {
if (m_searchParams.mustEndOnGround && (!onGround(node.position) || node.velocity.isValid()))
return false;
return distance(node.position, m_searchTo) < NodeGranularity;
};
auto neighborsFn = [this](Node const& node, List<Edge>& result) {
auto neighborFilter = [this](Edge const& edge) -> bool {
return distance(edge.source.position, m_searchFrom) <= m_searchParams.maxDistance.value(DefaultMaxDistance);
};
neighbors(node, result);
result.filter(neighborFilter);
};
auto validateEndFn = [this](Edge const& edge) -> bool {
if (!m_searchParams.mustEndOnGround)
return true;
return onGround(edge.target.position) && edge.action != Action::Jump;
};
Vec2F roundedFrom = roundToNode(m_searchFrom);
Vec2F roundedTo = roundToNode(m_searchTo);
m_astar = AStar::Search<Edge, Node>(heuristicCostFn,
neighborsFn,
goalReachedFn,
m_searchParams.returnBest,
{validateEndFn},
m_searchParams.maxFScore,
m_searchParams.maxNodesToSearch);
m_astar->start(Node{roundedFrom, {}}, Node{roundedTo, {}});
}
float PathFinder::heuristicCost(Vec2F const& fromPosition, Vec2F const& toPosition) const {
// This function is used to estimate the cost of travel between two nodes.
// Underestimating the actual cost results in A* giving the optimal path.
// Overestimating results in A* finding a non-optimal path, but terminating
// more quickly when there is a route to the target.
// We don't really care all that much about getting the optimal path as long
// as we get one that looks feasible, so we deliberately overestimate here.
Vec2F diff = m_world->geometry().diff(fromPosition, toPosition);
// Manhattan distance * 2:
return 2.0f * (abs(diff[0]) + abs(diff[1]));
}
Edge PathFinder::defaultCostEdge(Action action, Node const& source, Node const& target) const {
return Edge{distance(source.position, target.position), action, Vec2F(0, 0), source, target};
}
void PathFinder::neighbors(Node const& node, List<Edge>& neighbors) const {
if (node.velocity.isValid()) {
// Follow the current trajectory. Most of the time, this will only produce
// one neighbor to avoid massive search space explosion, however one
// change of X velocity is allowed at the peak of a jump.
getArcNeighbors(node, neighbors);
} else if (inLiquid(node.position)) {
getSwimmingNeighbors(node, neighbors);
} else if (acceleration(node.position)[1] == 0.0f) {
getFlyingNeighbors(node, neighbors);
} else if (onGround(node.position)) {
getWalkingNeighbors(node, neighbors);
if (!onSolidGround(node.position)) {
// Add a node for dropping through a platform.
// When that node is explored, if it's not onGround, its neighbors will
// be falling to the ground.
getDropNeighbors(node, neighbors);
}
getJumpingNeighbors(node, neighbors);
} else {
// We're in the air, and can only fall now
getFallingNeighbors(node, neighbors);
}
}
void PathFinder::getDropNeighbors(Node const& node, List<Edge>& neighbors) const {
auto dropPosition = node.position + Vec2F(0, -1);
// The physics of platforms don't allow us to drop through platforms resting
// directly on solid surfaces. So if there is solid ground below the
// platform, don't allow dropping through the platform:
if (!onSolidGround(dropPosition)) {
float dropCost = m_searchParams.dropCost.value(DefaultDropCost);
float acc = acceleration(node.position)[1];
float dropSpeed = acc * sqrt(2.0 / abs(acc));
neighbors.append(Edge{dropCost, Action::Drop, Vec2F(0, 0), node, Node{dropPosition, Vec2F(0, dropSpeed)}});
}
}
void PathFinder::getWalkingNeighborsInDirection(Node const& node, List<Edge>& neighbors, float direction) const {
auto addNode = [this, &node, &neighbors](Node const& target) {
neighbors.append(defaultCostEdge(Action::Walk, node, target));
};
Vec2F forward = node.position + Vec2F(direction, 0);
Vec2F forwardAndUp = node.position + Vec2F(direction, 1);
Vec2F forwardAndDown = node.position + Vec2F(direction, -1);
RectF bounds = boundBox(node.position);
bool slopeDown = false;
bool slopeUp = false;
Vec2F forwardGroundPos = direction > 0 ? Vec2F(bounds.xMax(), bounds.yMin()) : Vec2F(bounds.xMin(), bounds.yMin());
Vec2F backGroundPos = direction < 0 ? Vec2F(bounds.xMax(), bounds.yMin()) : Vec2F(bounds.xMin(), bounds.yMin());
m_world->forEachCollisionBlock(groundCollisionRect(node.position, BoundBoxKind::Full).padded(1), [&](CollisionBlock const& block) {
if (slopeUp || slopeDown) return;
for (size_t i = 0; i < block.poly.sides(); ++i) {
auto side = block.poly.side(i);
auto sideDir = side.direction();
auto lower = side.min()[1] < side.max()[1] ? side.min() : side.max();
auto upper = side.min()[1] > side.max()[1] ? side.min() : side.max();
if (sideDir[0] != 0 && sideDir[1] != 0 && (lower[1] == round(forwardGroundPos[1]) || upper[1] == round(forwardGroundPos[1]))) {
float yDir = (sideDir[1] / sideDir[0]) * direction;
if (abs(m_world->geometry().diff(forwardGroundPos, lower)[0]) < 0.5 && yDir > 0)
slopeUp = true;
else if (abs(m_world->geometry().diff(backGroundPos, upper)[0]) < 0.5 && yDir < 0)
slopeDown = true;
if (slopeUp || slopeDown) break;
}
}
});
Maybe<float> walkSpeed = m_movementParams.walkSpeed;
Maybe<float> runSpeed = m_movementParams.runSpeed;
// Check if it's possible to walk up a block like a ramp first
if (slopeUp && onGround(forwardAndUp) && validPosition(forwardAndUp)) {
// Walk up a slope
addNode(Node{forwardAndUp, {}});
} else if (validPosition(forward) && onGround(forward)) {
// Walk along a flat plane
addNode(Node{forward, {}});
} else if (slopeDown && validPosition(forward) && validPosition(forwardAndDown) && onGround(forwardAndDown)) {
// Walk down a slope
addNode(Node{forwardAndDown, {}});
} else if (validPosition(forward)) {
// Fall off a ledge
bounds = m_movementParams.standingPoly->boundBox();
float back = direction > 0 ? bounds.xMin() : bounds.xMax();
forward[0] -= (1 - fmod(abs(back), 1.0f)) * direction;
if (walkSpeed.isValid())
addNode(Node{forward, Vec2F{copysign(*walkSpeed, direction), 0.0f}});
if (runSpeed.isValid())
addNode(Node{forward, Vec2F{copysign(*runSpeed, direction), 0.0f}});
}
}
void PathFinder::getWalkingNeighbors(Node const& node, List<Edge>& neighbors) const {
getWalkingNeighborsInDirection(node, neighbors, NodeGranularity);
getWalkingNeighborsInDirection(node, neighbors, -NodeGranularity);
}
void PathFinder::getFallingNeighbors(Node const& node, List<Edge>& neighbors) const {
forEachArcNeighbor(node, 0.0f, [this, &node, &neighbors](Node const& target, bool landed) {
neighbors.append(defaultCostEdge(Action::Arc, node, target));
if (landed) {
neighbors.append(defaultCostEdge(Action::Land, target, Node{target.position, {}}));
}
});
}
void PathFinder::getJumpingNeighbors(Node const& node, List<Edge>& neighbors) const {
if (Maybe<float> jumpSpeed = m_movementParams.airJumpProfile.jumpSpeed) {
float jumpCost = m_searchParams.jumpCost.value(DefaultJumpCost);
if (inLiquid(node.position))
jumpCost = m_searchParams.liquidJumpCost.value(DefaultLiquidJumpCost);
auto addVel = [jumpCost, &node, &neighbors](Vec2F const& vel) {
neighbors.append(Edge{jumpCost, Action::Jump, vel, node, node.withVelocity(vel)});
};
forEachArcVelocity(*jumpSpeed, addVel);
forEachArcVelocity(*jumpSpeed * m_searchParams.smallJumpMultiplier.value(DefaultSmallJumpMultiplier), addVel);
}
}
void PathFinder::getSwimmingNeighbors(Node const& node, List<Edge>& neighbors) const {
// TODO avoid damaging liquids, e.g. lava
// We assume when we're swimming we can move freely against gravity
getFlyingNeighbors(node, neighbors);
// Also allow jumping out of the water if we're at the surface:
RectF box = boundBox(node.position);
if (acceleration(node.position)[1] != 0.0f && m_world->liquidLevel(box).level < 1.0f)
getJumpingNeighbors(node, neighbors);
neighbors.filter([this](Edge& edge) -> bool {
return inLiquid(edge.target.position);
});
neighbors.transform([this](Edge& edge) -> Edge& {
if (edge.action == Action::Fly)
edge.action = Action::Swim;
edge.cost *= m_searchParams.swimCost.value(DefaultSwimCost);
return edge;
});
}
void PathFinder::getFlyingNeighbors(Node const& node, List<Edge>& neighbors) const {
auto addNode = [this, &node, &neighbors](
Node const& target) { neighbors.append(defaultCostEdge(Action::Fly, node, target)); };
Vec2F roundedPosition = roundToNode(node.position);
for (int dx = -1; dx < 2; ++dx) {
for (int dy = -1; dy < 2; ++dy) {
Vec2F newPosition = roundedPosition + Vec2F(dx, dy) * NodeGranularity;
if (validPosition(newPosition)) {
addNode(Node{newPosition, {}});
}
}
}
}
void PathFinder::getArcNeighbors(Node const& node, List<Edge>& neighbors) const {
auto addNode = [this, &node, &neighbors](Node const& target, bool landed) {
neighbors.append(defaultCostEdge(Action::Arc, node, target));
if (landed) {
neighbors.append(defaultCostEdge(Action::Land, target, Node{target.position, {}}));
}
};
simulateArc(node, addNode);
}
void PathFinder::forEachArcVelocity(float yVelocity, function<void(Vec2F)> func) const {
Maybe<float> walkSpeed = m_movementParams.walkSpeed;
Maybe<float> runSpeed = m_movementParams.runSpeed;
func(Vec2F(0, yVelocity));
if (m_searchParams.enableWalkSpeedJumps && walkSpeed.isValid()) {
func(Vec2F(*walkSpeed, yVelocity));
func(Vec2F(-*walkSpeed, yVelocity));
}
if (runSpeed.isValid()) {
func(Vec2F(*runSpeed, yVelocity));
func(Vec2F(-*runSpeed, yVelocity));
}
}
void PathFinder::forEachArcNeighbor(Node const& node, float yVelocity, function<void(Node, bool)> func) const {
Vec2F position = roundToNode(node.position);
forEachArcVelocity(yVelocity,
[this, &position, &func](Vec2F const& vel) {
simulateArc(Node{position, vel}, func);
});
}
Vec2F PathFinder::acceleration(Vec2F pos) const {
auto const& parameters = m_movementParams;
float gravity = m_world->gravity(pos) * parameters.gravityMultiplier.value(1.0f);
if (!parameters.gravityEnabled.value(true) || parameters.mass.value(0.0f) == 0.0f)
gravity = 0.0f;
float buoyancy = parameters.airBuoyancy.value(0.0f);
return Vec2F(0, -gravity * (1.0f - buoyancy));
}
Vec2F PathFinder::simulateArcCollision(Vec2F position, Vec2F velocity, float dt, bool& collidedX, bool& collidedY) const {
// Returns the new position and whether a collision in the Y axis occurred.
// We avoid actual collision detection / resolution as that would make
// pathfinding very expensive.
Vec2F newPosition = position + velocity * dt;
if (validPosition(newPosition)) {
collidedX = collidedY = false;
return newPosition;
} else {
collidedX = collidedY = true;
if (validPosition(Vec2F(newPosition[0], position[1]))) {
collidedX = false;
position[0] = newPosition[0];
} else if (validPosition(Vec2F(position[0], newPosition[1]), BoundBoxKind::Stand)) {
collidedY = false;
position[1] = newPosition[1];
}
}
return position;
}
void PathFinder::simulateArc(Node const& node, function<void(Node, bool)> func) const {
Vec2F position = node.position;
Vec2F velocity = *node.velocity;
bool jumping = velocity[1] > 0.0f;
float maxLandingVelocity = m_searchParams.maxLandingVelocity.value(DefaultMaxLandingVelocity);
Vec2F acc = acceleration(position);
if (acc[1] == 0.0f)
return;
// Simulate until we're roughly NodeGranularity distance from the previous
// node
Vec2F start = roundToNode(node.position);
Vec2F rounded = start;
while (rounded == start) {
float speed = velocity.magnitude();
float dt = fmin(0.2f, speed != 0.0f ? SimulateArcGranularity / speed : sqrt(SimulateArcGranularity * 2.0 * abs(acc[1])));
bool collidedX = false, collidedY = false;
position = simulateArcCollision(position, velocity, dt, collidedX, collidedY);
rounded = roundToNode(position);
if (collidedY) {
// We've either landed or hit our head on the ceiling
if (!jumping) {
// Landed
if (velocity[1] < maxLandingVelocity)
func(Node{rounded, velocity}, true);
return;
} else if (onGround(rounded, BoundBoxKind::Stand)) {
// Simultaneously hit head and landed -- this is a gap we can *just*
// fit
// through. No checking of the maxLandingVelocity, since the tiles'
// polygons are rounded, making this an easier target to hit than it
// seems.
func(Node{rounded, velocity}, true);
return;
}
// Hit ceiling. Remove y velocity
velocity[1] = 0.0f;
} else if (collidedX) {
// Hit a wall, just fall down
velocity[0] = 0.0f;
if (jumping) {
velocity[1] = 0.0f;
jumping = false;
}
}
velocity += acc * dt;
if (jumping && velocity[1] <= 0.0f) {
// We've reached a peak in the jump and the entity can now choose to
// change direction.
Maybe<float> runSpeed = m_movementParams.runSpeed;
Maybe<float> walkSpeed = m_movementParams.walkSpeed;
float crawlMultiplier = m_searchParams.jumpDropXMultiplier.value(DefaultJumpDropXMultiplier);
if ((*node.velocity)[0] != 0.0f || m_searchParams.enableVerticalJumpAirControl) {
if (runSpeed.isValid())
func(Node{position, Vec2F{copysign(*runSpeed, velocity[0]), 0.0f}}, false);
if (m_searchParams.enableWalkSpeedJumps && walkSpeed.isValid()) {
func(Node{position, Vec2F{copysign(*walkSpeed, velocity[0]), 0.0f}}, false);
func(Node{position, Vec2F{copysign(*walkSpeed * crawlMultiplier, velocity[0]), 0.0f}}, false);
}
}
// Only fall straight down if we were going straight up originally.
// Going from an arc to falling straight down looks unnatural.
if ((*node.velocity)[0] == 0.0f) {
func(Node{position, Vec2F(0.0f, 0.0f)}, false);
}
return;
}
}
if (!jumping) {
if (velocity[1] < maxLandingVelocity) {
if (onGround(rounded, BoundBoxKind::Stand) || inLiquid(rounded)) {
// Collision with platform
func(Node{rounded, velocity}, true);
return;
}
}
}
starAssert(velocity[1] != 0.0f);
func(Node{position, velocity}, false);
return;
}
bool PathFinder::validPosition(Vec2F pos, BoundBoxKind boundKind) const {
return !m_world->rectTileCollision(RectI::integral(boundBox(pos, boundKind)), CollisionSolid);
}
bool PathFinder::onGround(Vec2F pos, BoundBoxKind boundKind) const {
auto groundRect = groundCollisionRect(pos, boundKind);
// Check there is something under the feet.
// We allow walking over the tops of objects (e.g. trapdoors) without being
// able to float inside objects.
if (m_world->rectTileCollision(RectI::integral(boundBox(pos, boundKind)), CollisionDynamic))
// We're inside an object. Don't collide with object directly below our
// feet:
return m_world->rectTileCollision(groundRect, CollisionFloorOnly);
// Not inside an object, allow colliding with objects below our feet:
// We need to be for sure above platforms, but can be up to a full tile
// below the top of solid blocks because rounded collision polys
return m_world->rectTileCollision(groundRect, CollisionAny) || m_world->rectTileCollision(groundRect.translated(Vec2I(0, 1)), CollisionSolid);
}
bool PathFinder::onSolidGround(Vec2F pos) const {
return m_world->rectTileCollision(groundCollisionRect(pos, BoundBoxKind::Drop), CollisionSolid);
}
bool PathFinder::inLiquid(Vec2F pos) const {
RectF box = boundBox(pos);
return m_world->liquidLevel(box).level >= m_movementParams.minimumLiquidPercentage.value(0.5f);
}
RectF PathFinder::boundBox(Vec2F pos, BoundBoxKind boundKind) const {
RectF boundBox;
if (boundKind == BoundBoxKind::Drop && m_searchParams.droppingBoundBox) {
boundBox = *m_searchParams.droppingBoundBox;
} else if (boundKind == BoundBoxKind::Stand && m_searchParams.standingBoundBox) {
boundBox = *m_searchParams.standingBoundBox;
} else if (m_searchParams.boundBox.isValid()) {
boundBox = *m_searchParams.boundBox;
} else {
boundBox = m_movementParams.standingPoly->boundBox();
}
boundBox.scale(BoundBoxRoundingErrorScaling);
boundBox.translate(pos);
return boundBox;
}
RectI PathFinder::groundCollisionRect(Vec2F pos, BoundBoxKind boundKind) const {
RectI bounds = RectI::integral(boundBox(pos, boundKind));
Vec2I min = Vec2I(bounds.xMin(), bounds.yMin() - 1);
Vec2I max = Vec2I(bounds.xMax(), bounds.yMin());
// Return a 1-tile-thick rectangle below the 'feet' of the entity
return RectI(min, max);
}
Vec2I PathFinder::groundNodePosition(Vec2F pos) const {
RectI bounds = RectI::integral(boundBox(pos));
return Vec2I(floor(pos[0]), bounds.yMin() - 1);
}
Vec2F PathFinder::roundToNode(Vec2F pos) const {
// Round pos to the nearest node.
// Work out the distance from the entity's origin to the bottom of its
// feet. We round Y relative to this so that we ensure we're able to
// generate
// paths through gaps that are *just* tall enough for the entity to fit
// through.
RectF boundBox;
if (m_searchParams.boundBox.isValid()) {
boundBox = *m_searchParams.boundBox;
} else {
boundBox = m_movementParams.standingPoly->boundBox();
}
float bottom = boundBox.yMin();
float x = round(pos[0] / NodeGranularity) * NodeGranularity;
float y = round((pos[1] + bottom) / NodeGranularity) * NodeGranularity - bottom;
return {x, y};
}
float PathFinder::distance(Vec2F a, Vec2F b) const {
return m_world->geometry().diff(a, b).magnitude();
}
}
}