2024-02-25 14:46:47 +00:00
|
|
|
#pragma once
|
2023-06-20 04:33:09 +00:00
|
|
|
|
|
|
|
#include "StarMultiArrayInterpolator.hpp"
|
|
|
|
|
|
|
|
namespace Star {
|
|
|
|
|
|
|
|
// Provides a method for storing, retrieving, and interpolating uneven
|
|
|
|
// n-variate data. Access times involve a binary search over the domain of
|
|
|
|
// each dimension, so is O(log(n)*m) where n is the size of the largest
|
|
|
|
// dimension, and m is the table_rank.
|
|
|
|
template <typename ElementT, typename PositionT, size_t RankN>
|
|
|
|
class MultiTable {
|
|
|
|
public:
|
|
|
|
typedef ElementT Element;
|
|
|
|
typedef PositionT Position;
|
|
|
|
static size_t const Rank = RankN;
|
|
|
|
|
|
|
|
typedef Star::MultiArray<ElementT, RankN> MultiArray;
|
|
|
|
|
|
|
|
typedef Star::MultiArrayInterpolator2<MultiArray, Position> Interpolator2;
|
|
|
|
typedef Star::MultiArrayInterpolator4<MultiArray, Position> Interpolator4;
|
|
|
|
typedef Star::MultiArrayPiecewiseInterpolator<MultiArray, Position> PiecewiseInterpolator;
|
|
|
|
|
|
|
|
typedef Array<Position, Rank> PositionArray;
|
|
|
|
typedef Array<Position, 2> WeightArray2;
|
|
|
|
typedef Array<Position, 4> WeightArray4;
|
|
|
|
typedef typename MultiArray::SizeArray SizeArray;
|
|
|
|
typedef typename MultiArray::IndexArray IndexArray;
|
|
|
|
typedef List<Position> Range;
|
|
|
|
typedef Array<Range, Rank> RangeArray;
|
|
|
|
|
|
|
|
typedef std::function<WeightArray2(Position)> WeightFunction2;
|
|
|
|
typedef std::function<WeightArray4(Position)> WeightFunction4;
|
|
|
|
typedef std::function<Element(PositionArray const&)> InterpolateFunction;
|
|
|
|
|
|
|
|
MultiTable() : m_interpolationMode(InterpolationMode::Linear), m_boundMode(BoundMode::Clamp) {}
|
|
|
|
|
|
|
|
// Set input ranges on a particular dimension. Will resize underlying storage
|
|
|
|
// to fit range.
|
|
|
|
void setRange(std::size_t dim, Range const& range) {
|
|
|
|
SizeArray sizes = m_array.size();
|
|
|
|
sizes[dim] = range.size();
|
|
|
|
m_array.resize(sizes);
|
|
|
|
|
|
|
|
m_ranges[dim] = range;
|
|
|
|
}
|
|
|
|
|
|
|
|
void setRanges(RangeArray const& ranges) {
|
|
|
|
SizeArray arraySize;
|
|
|
|
|
|
|
|
for (size_t dim = 0; dim < Rank; ++dim) {
|
|
|
|
arraySize[dim] = ranges[dim].size();
|
|
|
|
m_ranges[dim] = ranges[dim];
|
|
|
|
}
|
|
|
|
|
|
|
|
m_array.resize(arraySize);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set array element based on index.
|
|
|
|
void set(IndexArray const& index, Element const& element) {
|
|
|
|
m_array.set(index, element);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get array element based on index.
|
|
|
|
Element const& get(IndexArray const& index) const {
|
|
|
|
return m_array(index);
|
|
|
|
}
|
|
|
|
|
|
|
|
MultiArray const& array() const {
|
|
|
|
return m_array;
|
|
|
|
}
|
|
|
|
|
|
|
|
MultiArray& array() {
|
|
|
|
return m_array;
|
|
|
|
}
|
|
|
|
|
|
|
|
InterpolationMode interpolationMode() const {
|
|
|
|
return m_interpolationMode;
|
|
|
|
}
|
|
|
|
|
|
|
|
void setInterpolationMode(InterpolationMode interpolationMode) {
|
|
|
|
m_interpolationMode = interpolationMode;
|
|
|
|
}
|
|
|
|
|
|
|
|
BoundMode boundMode() const {
|
|
|
|
return m_boundMode;
|
|
|
|
}
|
|
|
|
|
|
|
|
void setBoundMode(BoundMode boundMode) {
|
|
|
|
m_boundMode = boundMode;
|
|
|
|
}
|
|
|
|
|
|
|
|
Element interpolate(PositionArray const& coord) const {
|
|
|
|
if (m_interpolationMode == InterpolationMode::HalfStep) {
|
|
|
|
PiecewiseInterpolator piecewiseInterpolator(StepWeightOperator<Position>(), m_boundMode);
|
|
|
|
return piecewiseInterpolator.interpolate(m_array, toIndexSpace(coord));
|
|
|
|
|
|
|
|
} else if (m_interpolationMode == InterpolationMode::Linear) {
|
|
|
|
Interpolator2 interpolator2(LinearWeightOperator<Position>(), m_boundMode);
|
|
|
|
return interpolator2.interpolate(m_array, toIndexSpace(coord));
|
|
|
|
|
|
|
|
} else if (m_interpolationMode == InterpolationMode::Cubic) {
|
|
|
|
// MultiTable uses CubicWeights with linear extrapolation (not
|
|
|
|
// configurable atm)
|
|
|
|
Interpolator4 interpolator4(Cubic4WeightOperator<Position>(true), m_boundMode);
|
|
|
|
return interpolator4.interpolate(m_array, toIndexSpace(coord));
|
|
|
|
|
|
|
|
} else {
|
|
|
|
throw MathException("Unsupported interpolation type in MultiTable::interpolate");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Synonym for inteprolate
|
|
|
|
Element operator()(PositionArray const& coord) const {
|
|
|
|
return interpolate(coord);
|
|
|
|
}
|
|
|
|
|
|
|
|
// op should take a PositionArray parameter and return an element.
|
|
|
|
template <typename OpType>
|
|
|
|
void eval(OpType op) {
|
|
|
|
m_array.forEach(EvalWrapper<OpType>(op, *this));
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
template <typename Coordinate>
|
|
|
|
inline PositionArray toIndexSpace(Coordinate const& coord) const {
|
|
|
|
PositionArray indexCoord;
|
|
|
|
for (size_t i = 0; i < Rank; ++i)
|
|
|
|
indexCoord[i] = inverseLinearInterpolateLower(m_ranges[i].begin(), m_ranges[i].end(), coord[i]);
|
|
|
|
return indexCoord;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename OpType>
|
|
|
|
struct EvalWrapper {
|
|
|
|
EvalWrapper(OpType& o, MultiTable const& t)
|
|
|
|
: op(o), table(t) {}
|
|
|
|
|
|
|
|
template <typename IndexArray>
|
|
|
|
void operator()(IndexArray const& indexArray, Element& element) {
|
|
|
|
PositionArray rangeArray;
|
|
|
|
for (size_t i = 0; i < Rank; ++i)
|
|
|
|
rangeArray[i] = table.m_ranges[i][indexArray[i]];
|
|
|
|
|
|
|
|
element = op(rangeArray);
|
|
|
|
}
|
|
|
|
|
|
|
|
OpType& op;
|
|
|
|
MultiTable const& table;
|
|
|
|
};
|
|
|
|
|
|
|
|
RangeArray m_ranges;
|
|
|
|
MultiArray m_array;
|
|
|
|
InterpolationMode m_interpolationMode;
|
|
|
|
BoundMode m_boundMode;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef MultiTable<float, float, 2> MultiTable2F;
|
|
|
|
typedef MultiTable<double, double, 2> MultiTable2D;
|
|
|
|
|
|
|
|
typedef MultiTable<float, float, 3> MultiTable3F;
|
|
|
|
typedef MultiTable<double, double, 3> MultiTable3D;
|
|
|
|
|
|
|
|
typedef MultiTable<float, float, 4> MultiTable4F;
|
|
|
|
typedef MultiTable<double, double, 4> MultiTable4D;
|
|
|
|
|
|
|
|
}
|