osb/source/core/StarBlockAllocator.hpp

269 lines
7.9 KiB
C++
Raw Normal View History

2023-06-20 04:33:09 +00:00
#ifndef STAR_BLOCK_ALLOCATOR_HPP
#define STAR_BLOCK_ALLOCATOR_HPP
#include <array>
#include <vector>
#include <unordered_map>
#include <limits>
#include <typeindex>
#include "StarException.hpp"
namespace Star {
// Constant size only allocator using fixed size blocks of memory. much faster
// than general purpose allocators, but not thread safe. Useful as the
// allocator for containers that mostly allocate one element at a time, such as
// std::list, std::map, std::set etc.
template <typename T, size_t BlockSize>
class BlockAllocator {
public:
typedef T value_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef T& reference;
typedef T const& const_reference;
// Allocator can be shared, but since it is NOT thread safe this should not
// be done by default.
typedef std::false_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
template <class U>
struct rebind {
typedef BlockAllocator<U, BlockSize> other;
};
BlockAllocator();
// Copy constructed BlockAllocators of the same type share underlying
// resources.
BlockAllocator(BlockAllocator const& other) = default;
BlockAllocator(BlockAllocator&& other) = default;
// Copy constructed BlockAllocators of different type share no resources
template <class U>
BlockAllocator(BlockAllocator<U, BlockSize> const& other);
BlockAllocator& operator=(BlockAllocator const& rhs) = default;
BlockAllocator& operator=(BlockAllocator&& rhs) = default;
// If n is != 1, will fall back on std::allocator<T>
T* allocate(size_t n);
void deallocate(T* p, size_t n);
template <typename... Args>
void construct(pointer p, Args&&... args) const;
void destroy(pointer p) const;
// BlockAllocator will always be != to any other BlockAllocator instance
template <class U>
bool operator==(BlockAllocator<U, BlockSize> const& rhs) const;
template <class U>
bool operator!=(BlockAllocator<U, BlockSize> const& rhs) const;
private:
template <typename OtherT, size_t OtherBlockSize>
friend class BlockAllocator;
using ChunkIndex =
std::conditional_t<BlockSize <= std::numeric_limits<uint8_t>::max(), uint8_t,
std::conditional_t<BlockSize <= std::numeric_limits<uint16_t>::max(), uint16_t,
std::conditional_t<BlockSize <= std::numeric_limits<uint32_t>::max(), uint32_t,
std::conditional_t<BlockSize <= std::numeric_limits<uint64_t>::max(), uint64_t, uintmax_t>>>>;
static ChunkIndex const NullChunkIndex = std::numeric_limits<ChunkIndex>::max();
struct Unallocated {
ChunkIndex prev;
ChunkIndex next;
};
typedef std::aligned_union_t<0, T, Unallocated> Chunk;
struct Block {
T* allocate();
void deallocate(T* ptr);
bool full() const;
bool empty() const;
Chunk* chunkPointer(ChunkIndex chunkIndex);
std::array<Chunk, BlockSize> chunks;
ChunkIndex firstUnallocated = NullChunkIndex;
ChunkIndex allocationCount = 0;
};
struct Data {
std::vector<unique_ptr<Block>> blocks;
Block* unfilledBlock;
std::allocator<T> multiAllocator;
};
typedef std::unordered_map<std::type_index, shared_ptr<void>> BlockAllocatorFamily;
static Data* getAllocatorData(BlockAllocatorFamily& family);
shared_ptr<BlockAllocatorFamily> m_family;
Data* m_data;
};
template <typename T, size_t BlockSize>
BlockAllocator<T, BlockSize>::BlockAllocator() {
m_family = make_shared<BlockAllocatorFamily>();
m_data = getAllocatorData(*m_family);
m_data->blocks.reserve(32);
m_data->unfilledBlock = nullptr;
}
template <typename T, size_t BlockSize>
template <class U>
BlockAllocator<T, BlockSize>::BlockAllocator(BlockAllocator<U, BlockSize> const& other)
: m_family(other.m_family) {
m_data = getAllocatorData(*m_family);
}
template <typename T, size_t BlockSize>
T* BlockAllocator<T, BlockSize>::allocate(size_t n) {
if (n == 1) {
if (m_data->unfilledBlock == nullptr) {
for (auto const& p : m_data->blocks) {
if (!p->full()) {
m_data->unfilledBlock = p.get();
break;
}
}
if (!m_data->unfilledBlock) {
auto block = make_unique<Block>();
m_data->unfilledBlock = block.get();
auto sortedPosition = std::lower_bound(m_data->blocks.begin(), m_data->blocks.end(), block.get(), [](std::unique_ptr<Block> const& a, Block* b) {
return a.get() < b;
});
m_data->blocks.insert(sortedPosition, std::move(block));
2023-06-20 04:33:09 +00:00
}
}
auto allocated = m_data->unfilledBlock->allocate();
if (m_data->unfilledBlock->full())
m_data->unfilledBlock = nullptr;
return allocated;
} else {
return m_data->multiAllocator.allocate(n);
}
}
template <typename T, size_t BlockSize>
void BlockAllocator<T, BlockSize>::deallocate(T* p, size_t n) {
if (n == 1) {
starAssert(p);
auto i = std::upper_bound(m_data->blocks.begin(), m_data->blocks.end(), p, [](T* a, std::unique_ptr<Block> const& b) {
return a < (T*)b->chunkPointer(0);
});
starAssert(i != m_data->blocks.begin());
--i;
(*i)->deallocate(p);
if (!m_data->unfilledBlock) {
m_data->unfilledBlock = i->get();
} else if ((*i)->empty()) {
if (m_data->unfilledBlock != i->get())
m_data->blocks.erase(i);
}
} else {
m_data->multiAllocator.deallocate(p, n);
}
}
template <typename T, size_t BlockSize>
template <typename... Args>
void BlockAllocator<T, BlockSize>::construct(pointer p, Args&&... args) const {
new (p) T(std::forward<Args>(args)...);
2023-06-20 04:33:09 +00:00
}
template <typename T, size_t BlockSize>
void BlockAllocator<T, BlockSize>::destroy(pointer p) const {
p->~T();
}
template <typename T, size_t BlockSize>
template <class U>
bool BlockAllocator<T, BlockSize>::operator==(BlockAllocator<U, BlockSize> const& rhs) const {
return m_family == rhs.m_family;
}
template <typename T, size_t BlockSize>
template <class U>
bool BlockAllocator<T, BlockSize>::operator!=(BlockAllocator<U, BlockSize> const& rhs) const {
return m_family != rhs.m_family;
}
template <typename T, size_t BlockSize>
T* BlockAllocator<T, BlockSize>::Block::allocate() {
starAssert(allocationCount < BlockSize);
T* allocated;
if (firstUnallocated == NullChunkIndex) {
allocated = (T*)chunkPointer(allocationCount);
} else {
void* chunk = chunkPointer(firstUnallocated);
starAssert(((Unallocated*)chunk)->prev == NullChunkIndex);
firstUnallocated = ((Unallocated*)chunk)->next;
if (firstUnallocated != NullChunkIndex)
((Unallocated*)chunkPointer(firstUnallocated))->prev = NullChunkIndex;
allocated = (T*)chunk;
}
++allocationCount;
return allocated;
}
template <typename T, size_t BlockSize>
void BlockAllocator<T, BlockSize>::Block::deallocate(T* ptr) {
starAssert(allocationCount > 0);
ChunkIndex chunkIndex = ptr - (T*)chunkPointer(0);
starAssert((T*)chunkPointer(chunkIndex) == ptr);
auto c = (Unallocated*)chunkPointer(chunkIndex);
c->prev = NullChunkIndex;
c->next = firstUnallocated;
if (firstUnallocated != NullChunkIndex)
((Unallocated*)chunkPointer(firstUnallocated))->prev = chunkIndex;
firstUnallocated = chunkIndex;
--allocationCount;
}
template <typename T, size_t BlockSize>
bool BlockAllocator<T, BlockSize>::Block::full() const {
return allocationCount == BlockSize;
}
template <typename T, size_t BlockSize>
bool BlockAllocator<T, BlockSize>::Block::empty() const {
return allocationCount == 0;
}
template <typename T, size_t BlockSize>
auto BlockAllocator<T, BlockSize>::Block::chunkPointer(ChunkIndex chunkIndex) -> Chunk* {
starAssert(chunkIndex < BlockSize);
return &chunks[chunkIndex];
}
template <typename T, size_t BlockSize>
typename BlockAllocator<T, BlockSize>::Data* BlockAllocator<T, BlockSize>::getAllocatorData(BlockAllocatorFamily& family) {
auto& dataptr = family[typeid(Data)];
if (!dataptr)
dataptr = make_shared<Data>();
return (Data*)dataptr.get();
}
}
#endif