osb/source/base/StarCellularLighting.cpp

253 lines
8.9 KiB
C++
Raw Normal View History

2023-06-20 14:33:09 +10:00
#include "StarCellularLighting.hpp"
namespace Star {
2024-03-20 01:53:34 +11:00
Lightmap::Lightmap() : m_width(0), m_height(0) {}
Lightmap::Lightmap(unsigned width, unsigned height) : m_width(width), m_height(height) {
m_data = std::make_unique<float[]>(len());
}
Lightmap::Lightmap(Lightmap const& lightMap) {
operator=(lightMap);
}
Lightmap::Lightmap(Lightmap&& lightMap) noexcept {
operator=(std::move(lightMap));
}
Lightmap& Lightmap::operator=(Lightmap const& lightMap) {
m_width = lightMap.m_width;
m_height = lightMap.m_height;
if (lightMap.m_data) {
m_data = std::make_unique<float[]>(len());
memcpy(m_data.get(), lightMap.m_data.get(), len());
}
return *this;
}
Lightmap& Lightmap::operator=(Lightmap&& lightMap) noexcept {
m_width = take(lightMap.m_width);
m_height = take(lightMap.m_height);
m_data = take(lightMap.m_data);
return *this;
}
Lightmap::operator ImageView() {
ImageView view;
view.data = (uint8_t*)m_data.get();
view.size = size();
view.format = PixelFormat::RGB_F;
return view;
}
CellularLightingCalculator::CellularLightingCalculator(bool monochrome)
: m_monochrome(monochrome)
{
if (monochrome)
m_lightArray.setRight(ScalarCellularLightArray());
else
m_lightArray.setLeft(ColoredCellularLightArray());
2023-06-20 14:33:09 +10:00
}
void CellularLightingCalculator::setMonochrome(bool monochrome) {
if (monochrome == m_monochrome)
return;
m_monochrome = monochrome;
if (monochrome)
m_lightArray.setRight(ScalarCellularLightArray());
else
m_lightArray.setLeft(ColoredCellularLightArray());
if (m_config)
setParameters(m_config);
}
void CellularLightingCalculator::setParameters(Json const& config) {
m_config = config;
if (m_monochrome)
m_lightArray.right().setParameters(
config.getInt("spreadPasses"),
config.getFloat("spreadMaxAir"),
config.getFloat("spreadMaxObstacle"),
config.getFloat("pointMaxAir"),
config.getFloat("pointMaxObstacle"),
config.getFloat("pointObstacleBoost"),
config.getBool("pointAdditive", false)
2023-06-20 14:33:09 +10:00
);
else
m_lightArray.left().setParameters(
config.getInt("spreadPasses"),
config.getFloat("spreadMaxAir"),
config.getFloat("spreadMaxObstacle"),
config.getFloat("pointMaxAir"),
config.getFloat("pointMaxObstacle"),
config.getFloat("pointObstacleBoost"),
config.getBool("pointAdditive", false)
2023-06-20 14:33:09 +10:00
);
}
void CellularLightingCalculator::begin(RectI const& queryRegion) {
m_queryRegion = queryRegion;
if (m_monochrome) {
m_calculationRegion = RectI(queryRegion).padded((int)m_lightArray.right().borderCells());
m_lightArray.right().begin(m_calculationRegion.width(), m_calculationRegion.height());
} else {
m_calculationRegion = RectI(queryRegion).padded((int)m_lightArray.left().borderCells());
m_lightArray.left().begin(m_calculationRegion.width(), m_calculationRegion.height());
}
}
RectI CellularLightingCalculator::calculationRegion() const {
return m_calculationRegion;
}
void CellularLightingCalculator::addSpreadLight(Vec2F const& position, Vec3F const& light) {
Vec2F arrayPosition = position - Vec2F(m_calculationRegion.min());
if (m_monochrome)
m_lightArray.right().addSpreadLight({arrayPosition, light.max()});
else
m_lightArray.left().addSpreadLight({arrayPosition, light});
}
void CellularLightingCalculator::addPointLight(Vec2F const& position, Vec3F const& light, float beam, float beamAngle, float beamAmbience, bool asSpread) {
2023-06-20 14:33:09 +10:00
Vec2F arrayPosition = position - Vec2F(m_calculationRegion.min());
if (m_monochrome)
m_lightArray.right().addPointLight({arrayPosition, light.max(), beam, beamAngle, beamAmbience, asSpread});
2023-06-20 14:33:09 +10:00
else
m_lightArray.left().addPointLight({arrayPosition, light, beam, beamAngle, beamAmbience, asSpread});
2023-06-20 14:33:09 +10:00
}
void CellularLightingCalculator::calculate(Image& output) {
Vec2S arrayMin = Vec2S(m_queryRegion.min() - m_calculationRegion.min());
Vec2S arrayMax = Vec2S(m_queryRegion.max() - m_calculationRegion.min());
if (m_monochrome)
m_lightArray.right().calculate(arrayMin[0], arrayMin[1], arrayMax[0], arrayMax[1]);
else
m_lightArray.left().calculate(arrayMin[0], arrayMin[1], arrayMax[0], arrayMax[1]);
output.reset(arrayMax[0] - arrayMin[0], arrayMax[1] - arrayMin[1], PixelFormat::RGB24);
2024-03-19 18:21:54 +11:00
if (m_monochrome) {
for (size_t x = arrayMin[0]; x < arrayMax[0]; ++x) {
for (size_t y = arrayMin[1]; y < arrayMax[1]; ++y) {
2023-06-20 14:33:09 +10:00
output.set24(x - arrayMin[0], y - arrayMin[1], Color::grayf(m_lightArray.right().getLight(x, y)).toRgb());
2024-03-19 18:21:54 +11:00
}
}
} else {
for (size_t x = arrayMin[0]; x < arrayMax[0]; ++x) {
for (size_t y = arrayMin[1]; y < arrayMax[1]; ++y) {
2023-06-20 14:33:09 +10:00
output.set24(x - arrayMin[0], y - arrayMin[1], Color::v3fToByte(m_lightArray.left().getLight(x, y)));
2024-03-19 18:21:54 +11:00
}
2023-06-20 14:33:09 +10:00
}
}
}
2024-03-20 01:53:34 +11:00
void CellularLightingCalculator::calculate(Lightmap& output) {
Vec2S arrayMin = Vec2S(m_queryRegion.min() - m_calculationRegion.min());
Vec2S arrayMax = Vec2S(m_queryRegion.max() - m_calculationRegion.min());
if (m_monochrome)
m_lightArray.right().calculate(arrayMin[0], arrayMin[1], arrayMax[0], arrayMax[1]);
else
m_lightArray.left().calculate(arrayMin[0], arrayMin[1], arrayMax[0], arrayMax[1]);
output = Lightmap(arrayMax[0] - arrayMin[0], arrayMax[1] - arrayMin[1]);
float brightnessLimit = m_config.getFloat("brightnessLimit");
2024-03-29 02:23:36 +11:00
2024-03-20 01:53:34 +11:00
if (m_monochrome) {
for (size_t x = arrayMin[0]; x < arrayMax[0]; ++x) {
for (size_t y = arrayMin[1]; y < arrayMax[1]; ++y) {
2024-03-29 02:23:36 +11:00
auto light = min(m_lightArray.right().getLight(x, y), brightnessLimit);
output.set(x - arrayMin[0], y - arrayMin[1], light);
2024-03-20 01:53:34 +11:00
}
}
} else {
for (size_t x = arrayMin[0]; x < arrayMax[0]; ++x) {
for (size_t y = arrayMin[1]; y < arrayMax[1]; ++y) {
2024-03-29 02:23:36 +11:00
auto light = m_lightArray.left().getLight(x, y);
float intensity = ColoredLightTraits::maxIntensity(light);
if (intensity > brightnessLimit)
light *= brightnessLimit / intensity;
output.set(x - arrayMin[0], y - arrayMin[1], light);
2024-03-20 01:53:34 +11:00
}
}
}
}
void CellularLightingCalculator::setupImage(Image& image, PixelFormat format) const {
Vec2S arrayMin = Vec2S(m_queryRegion.min() - m_calculationRegion.min());
Vec2S arrayMax = Vec2S(m_queryRegion.max() - m_calculationRegion.min());
image.reset(arrayMax[0] - arrayMin[0], arrayMax[1] - arrayMin[1], format);
}
2023-06-20 14:33:09 +10:00
void CellularLightIntensityCalculator::setParameters(Json const& config) {
m_lightArray.setParameters(
config.getInt("spreadPasses"),
config.getFloat("spreadMaxAir"),
config.getFloat("spreadMaxObstacle"),
config.getFloat("pointMaxAir"),
config.getFloat("pointMaxObstacle"),
config.getFloat("pointObstacleBoost"),
config.getBool("pointAdditive", false)
2023-06-20 14:33:09 +10:00
);
}
void CellularLightIntensityCalculator::begin(Vec2F const& queryPosition) {
m_queryPosition = queryPosition;
m_queryRegion = RectI::withSize(Vec2I::floor(queryPosition - Vec2F::filled(0.5f)), Vec2I(2, 2));
m_calculationRegion = RectI(m_queryRegion).padded((int)m_lightArray.borderCells());
m_lightArray.begin(m_calculationRegion.width(), m_calculationRegion.height());
}
RectI CellularLightIntensityCalculator::calculationRegion() const {
return m_calculationRegion;
}
void CellularLightIntensityCalculator::setCell(Vec2I const& position, Cell const& cell) {
setCellColumn(position, &cell, 1);
}
void CellularLightIntensityCalculator::setCellColumn(Vec2I const& position, Cell const* cells, size_t count) {
size_t baseIndex = (position[0] - m_calculationRegion.xMin()) * m_calculationRegion.height() + position[1] - m_calculationRegion.yMin();
for (size_t i = 0; i < count; ++i)
m_lightArray.cellAtIndex(baseIndex + i) = cells[i];
}
void CellularLightIntensityCalculator::addSpreadLight(Vec2F const& position, float light) {
Vec2F arrayPosition = position - Vec2F(m_calculationRegion.min());
m_lightArray.addSpreadLight({arrayPosition, light});
}
void CellularLightIntensityCalculator::addPointLight(Vec2F const& position, float light, float beam, float beamAngle, float beamAmbience) {
Vec2F arrayPosition = position - Vec2F(m_calculationRegion.min());
m_lightArray.addPointLight({arrayPosition, light, beam, beamAngle, beamAmbience, false});
2023-06-20 14:33:09 +10:00
}
float CellularLightIntensityCalculator::calculate() {
Vec2S arrayMin = Vec2S(m_queryRegion.min() - m_calculationRegion.min());
Vec2S arrayMax = Vec2S(m_queryRegion.max() - m_calculationRegion.min());
m_lightArray.calculate(arrayMin[0], arrayMin[1], arrayMax[0], arrayMax[1]);
// Do 2d lerp to find lighting intensity
float ll = m_lightArray.getLight(arrayMin[0], arrayMin[1]);
float lr = m_lightArray.getLight(arrayMin[0] + 1, arrayMin[1]);
float ul = m_lightArray.getLight(arrayMin[0], arrayMin[1] + 1);
float ur = m_lightArray.getLight(arrayMin[0] + 1, arrayMin[1] + 1);
float xl = m_queryPosition[0] - 0.5f - m_queryRegion.xMin();
float yl = m_queryPosition[1] - 0.5f - m_queryRegion.yMin();
return lerp(yl, lerp(xl, ll, lr), lerp(xl, ul, ur));
}
}