osb/source/core/StarRandomPoint.hpp

78 lines
2.9 KiB
C++
Raw Normal View History

#pragma once
2023-06-20 14:33:09 +10:00
#include "StarRandom.hpp"
#include "StarPoly.hpp"
#include "StarTtlCache.hpp"
namespace Star {
// An "infinite" generator of points on a 2d plane, generated cell by cell with
// an upper and lower cell density range. Each point is generated in a
// predictable way sector by sector, as long as the generator function is
// predictable and uses the RandomSource in a predictable way. Useful for
// things like starfields, fields of debris, random object placement, etc.
template <typename PointData, typename DataType = float>
2023-06-20 14:33:09 +10:00
class Random2dPointGenerator {
public:
typedef Star::Polygon<DataType> Poly;
typedef Star::Vector<DataType, 2> Point;
typedef Star::Rect<DataType> Rect;
typedef List<pair<Point, PointData>> PointSet;
2023-06-20 14:33:09 +10:00
Random2dPointGenerator(uint64_t seed, float cellSize, Vec2I const& densityRange);
// Each point will in the area will be generated in a predictable order, and
// if the callback uses the RandomSource in a predictable way, will generate
// the same field for every call.
template <typename PointCallback>
PointSet generate(Poly const& area, PointCallback callback);
2023-06-20 14:33:09 +10:00
private:
HashTtlCache<Point, PointSet> m_cache;
2023-06-20 14:33:09 +10:00
uint64_t m_seed;
float m_cellSize;
Vec2I m_densityRange;
};
template <typename PointData, typename DataType>
inline Random2dPointGenerator<PointData, DataType>::Random2dPointGenerator(uint64_t seed, float cellSize, Vec2I const& densityRange)
2023-06-20 14:33:09 +10:00
: m_seed(seed), m_cellSize(cellSize), m_densityRange(densityRange) {}
template <typename PointData, typename DataType>
2023-06-20 14:33:09 +10:00
template <typename PointCallback>
auto Random2dPointGenerator<PointData, DataType>::generate(Poly const& area, PointCallback callback) -> PointSet {
2023-06-20 14:33:09 +10:00
auto bound = area.boundBox();
int64_t sectorXMin = std::floor(bound.xMin() / m_cellSize);
int64_t sectorYMin = std::floor(bound.yMin() / m_cellSize);
int64_t sectorXMax = std::ceil(bound.xMax() / m_cellSize);
int64_t sectorYMax = std::ceil(bound.yMax() / m_cellSize);
PointSet finalResult;
RandomSource sectorRandomness;
2023-06-20 14:33:09 +10:00
for (int64_t x = sectorXMin; x <= sectorXMax; ++x) {
for (int64_t y = sectorYMin; y <= sectorYMax; ++y) {
auto sector = Rect::withSize({x * m_cellSize, y * m_cellSize}, Point::filled(m_cellSize));
if (!area.intersects(Poly(sector)))
2023-06-20 14:33:09 +10:00
continue;
finalResult.appendAll(m_cache.get(Point(x, y), [&](Point const&) {
2023-06-20 14:33:09 +10:00
PointSet sectorResult;
sectorRandomness.init(staticRandomU64(m_seed, x, y));
2023-06-20 14:33:09 +10:00
unsigned max = sectorRandomness.randInt(m_densityRange[0], m_densityRange[1]);
for (unsigned i = 0; i < max; ++i) {
Point pointPos = Point(x + (DataType)sectorRandomness.randd(), y + (DataType)sectorRandomness.randd()) * m_cellSize;
sectorResult.append(pair<Point, PointData>(pointPos, callback(sectorRandomness)));
2023-06-20 14:33:09 +10:00
}
return sectorResult;
}));
}
}
return finalResult;
}
}