osb/source/core/StarInterpolation.hpp

455 lines
12 KiB
C++
Raw Normal View History

2023-06-20 14:33:09 +10:00
#ifndef STAR_INTERPOLATE_BASE
#define STAR_INTERPOLATE_BASE
#include "StarMathCommon.hpp"
#include "StarArray.hpp"
#include "StarAlgorithm.hpp"
namespace Star {
enum class BoundMode {
Clamp,
Extrapolate,
Wrap
};
enum class InterpolationMode {
HalfStep,
Linear,
Cubic
};
template <typename T1, typename T2>
T2 angleLerp(T1 const& offset, T2 const& f0, T2 const& f1) {
return f0 + angleDiff(f0, f1) * offset;
}
template <typename T1, typename T2>
T2 sinEase(T1 const& offset, T2 const& f0, T2 const& f1) {
T1 w = (sin(offset * Constants::pi - Constants::pi / 2) + 1) / 2;
return f0 * (1 - w) + f1 * w;
}
template <typename T1, typename T2>
T2 lerp(T1 const& offset, T2 const& f0, T2 const& f1) {
return f0 * (1 - offset) + f1 * (offset);
}
template <typename T1, typename T2>
T2 lerpWithLimit(Maybe<T2> const& limit, T1 const& offset, T2 const& f0, T2 const& f1) {
if (limit && abs(f1 - f0) > *limit)
return f1;
return lerp(offset, f0, f1);
}
template <typename T1, typename T2>
T2 step(T1 threshold, T1 x, T2 a, T2 b) {
if (x < threshold)
return a;
else
return b;
}
template <typename T1, typename T2>
T2 halfStep(T1 x, T2 a, T2 b) {
if (x < 0.5)
return a;
else
return b;
}
template <typename T1, typename T2>
T2 cubic4(T1 const& x, T2 const& f0, T2 const& f1, T2 const& f2, T2 const& f3) {
// (-1/2 * f0 + 3/2 * f1 + -3/2 * f2 + 1/2 * f3) * x * x * x +
// ( 1 * f0 + -5/2 * f1 + 2 * f2 + -1/2 * f3) * x * x +
// (-1/2 * f0 + 0 * f1 + 1/2 * f2 + 0 * f3) * x +
// ( 0 * f0 + 1 * f1 + 0 * f2 + 0 * f3) * 1.0
return f1 + (f2 - f0 + (f0 * 2.0 - f1 * 5.0 + f2 * 4.0 - f3 + ((f1 - f2) * 3.0 + f3 - f0) * x) * x) * x * 0.5;
}
template <typename T1, typename T2>
T2 catmulRom4(T1 const& x, T2 const& f0, T2 const& f1, T2 const& f2, T2 const& f3) {
return ((f1 * 2) + (-f0 + f2) * x + (f0 * 2 - f1 * 5 + f2 * 4 - f3) * x * x
+ (-f0 + f1 * 3 - f2 * 3 + f3) * x * x * x)
* 0.5;
}
template <typename T1, typename T2>
T2 hermite2(T1 const& x, T2 const& a, T2 const& b) {
return a + (b - a) * x * x * (3 - 2 * x);
}
template <typename T1, typename T2>
T2 quintic2(T1 const& x, T2 const& a, T2 const& b) {
return a + (b - a) * x * x * x * (x * (x * 6 - 15) + 10);
}
template <typename WeightT>
struct LinearWeightOperator {
typedef WeightT Weight;
typedef Array<Weight, 2> WeightVec;
WeightVec operator()(Weight x) const {
return {1 - x, x};
}
};
template <typename WeightT>
struct StepWeightOperator {
typedef WeightT Weight;
typedef Array<Weight, 2> WeightVec;
StepWeightOperator(Weight threshold = 0.5) : threshold(threshold) {}
WeightVec operator()(Weight x) const {
if (x < threshold)
return {1, 0};
else
return {0, 1};
}
Weight threshold;
};
template <typename WeightT>
struct SinWeightOperator {
typedef WeightT Weight;
typedef Array<Weight, 2> WeightVec;
WeightVec operator()(Weight x) const {
Weight w = (sin(x * Constants::pi - Constants::pi / 2) + 1) / 2;
return {1 - w, w};
}
};
template <typename WeightT>
struct Hermite2WeightOperator {
typedef WeightT Weight;
typedef Array<Weight, 2> WeightVec;
WeightVec operator()(Weight x) const {
Weight w = x * x * (3 - 2 * x);
return {1 - w, w};
}
};
template <typename WeightT>
struct Quintic2WeightOperator {
typedef WeightT Weight;
typedef Array<Weight, 2> WeightVec;
WeightVec operator()(Weight x) const {
Weight w = x * x * x * (x * (x * 6 - 15) + 10);
return {1 - w, w};
}
};
// Setting 'LinearExtrapolate' flag to true changes the weights to be linear
// when x is outside of the range [0.0, 1.0]
template <typename WeightT>
struct Cubic4WeightOperator {
typedef WeightT Weight;
typedef Array<Weight, 4> WeightVec;
Cubic4WeightOperator(bool le = false) : linearExtrapolate(le) {}
WeightVec operator()(Weight x) const {
if (linearExtrapolate && x > 1) {
return {0, 0, 2 - x, x - 1};
} else if (linearExtrapolate && x < 0) {
return {-x, 1 + x, 0, 0};
} else {
// (-1/2 * f0 + 3/2 * f1 + -3/2 * f2 + 1/2 * f3) * x*x*x +
// ( 1 * f0 + -5/2 * f1 + 2 * f2 + -1/2 * f3) * x*x +
// (-1/2 * f0 + 0 * f1 + 1/2 * f2 + 0 * f3) * x +
// ( 0 * f0 + 1 * f1 + 0 * f2 + 0 * f3) * 1.0
Weight x2 = x * x;
Weight x3 = x2 * x;
return WeightVec(-0.5 * x3 + 1 * x2 - 0.5 * x,
1.5 * x3 + -2.5 * x2 + 1.0,
-1.5 * x3 + 2.0 * x2 + 0.5 * x,
0.5 * x3 - 0.5 * x2);
}
}
bool linearExtrapolate;
};
// Setting 'LinearExtrapolate' flag to true changes the weights to be linear
// when x is outside of the range [0.0, 1.0]
template <typename WeightT>
struct Catmul4WeightOperator {
typedef WeightT Weight;
typedef Array<Weight, 4> WeightVec;
Catmul4WeightOperator(bool le = false) : linearExtrapolate(le) {}
WeightVec operator()(Weight x) const {
if (linearExtrapolate && x > 1) {
return {0, 0, 2 - x, x - 1};
} else if (linearExtrapolate && x < 0) {
return {-x, 1 + x, 0, 0};
} else {
Weight x2 = x * x;
Weight x3 = x * x * x;
return {(-x3 + x2 * 2 - x) / 2, (x3 * 3 - x2 * 5 + 2) / 2, (-x3 * 3 + x2 * 4 + x) / 2, (x3 - x2) / 2};
}
}
bool linearExtrapolate;
};
template <typename Loctype, typename IndexType>
struct Bound2 {
IndexType i0;
IndexType i1;
Loctype offset;
};
// loc should be in "index space", meaning that 0 points exactly to the first
// element and extent - 1
// points exactly to the last element.
template <typename LocType, typename IndexType>
Bound2<LocType, IndexType> getBound2(LocType loc, IndexType extent, BoundMode bmode) {
Bound2<LocType, IndexType> bound;
if (extent <= 1) {
bound.i0 = bound.i1 = bound.offset = 0;
return bound;
}
bound.offset = 0;
if (bmode == BoundMode::Wrap) {
loc = pfmod<LocType>(loc, extent);
} else {
LocType newLoc = clamp<LocType>(loc, 0, extent - 1);
if (bmode == BoundMode::Extrapolate)
bound.offset += loc - newLoc;
loc = newLoc;
}
bound.i0 = IndexType(loc);
if (bound.i0 == extent - 1) {
if (bmode == BoundMode::Wrap) {
bound.i1 = 0;
} else {
bound.i1 = bound.i0;
bound.i0 -= 1;
}
} else {
bound.i1 = bound.i0 + 1;
}
bound.offset += loc - bound.i0;
return bound;
}
template <typename Loctype, typename IndexType>
struct Bound4 {
Bound4() {}
IndexType i0;
IndexType i1;
IndexType i2;
IndexType i3;
Loctype offset;
};
// loc should be in "index space", meaning that 0 points exactly to the first
// element and extent - 1
// points exactly to the last element.
template <typename LocType, typename IndexType>
Bound4<LocType, IndexType> getBound4(LocType loc, IndexType extent, BoundMode bmode) {
Bound4<LocType, IndexType> bound;
if (extent <= 1) {
bound.i0 = bound.i1 = bound.i2 = bound.i3 = bound.offset = 0;
return bound;
}
bound.offset = 0;
if (bmode == BoundMode::Wrap) {
loc = pfmod<LocType>(loc, extent);
} else {
LocType newLoc = clamp<LocType>(loc, 0, extent - 1);
if (bmode == BoundMode::Extrapolate)
bound.offset += loc - newLoc;
loc = newLoc;
}
bound.i1 = IndexType(loc);
if (bound.i1 == extent - 1) {
if (bmode == BoundMode::Wrap) {
bound.i0 = bound.i1 - 1;
bound.i2 = 0;
bound.i3 = 1;
} else {
bound.i1 = bound.i1 - 2;
bound.i0 = bound.i1 - 1;
bound.i2 = bound.i1 + 1;
bound.i3 = bound.i2 + 1;
}
} else if (bound.i1 == extent - 2) {
if (bmode == BoundMode::Wrap) {
bound.i0 = bound.i1 - 1;
bound.i2 = bound.i1 + 1;
bound.i3 = 0;
} else {
bound.i1 = bound.i1 - 1;
bound.i0 = bound.i1 - 1;
bound.i2 = bound.i1 + 1;
bound.i3 = bound.i2 + 1;
}
} else if (bound.i1 == 0) {
if (bmode == BoundMode::Wrap) {
bound.i0 = extent - 1;
bound.i2 = bound.i1 + 1;
bound.i3 = bound.i2 + 1;
} else {
bound.i1 = bound.i1 + 1;
bound.i0 = bound.i1 - 1;
bound.i2 = bound.i1 + 1;
bound.i3 = bound.i2 + 1;
}
} else {
bound.i0 = bound.i1 - 1;
bound.i2 = bound.i1 + 1;
bound.i3 = bound.i1 + 2;
}
bound.offset += loc - bound.i1;
return bound;
}
template <typename Container, typename Pos, typename WeightOp>
typename Container::value_type listInterpolate2(
Container const& cont, Pos x, WeightOp weightOp, BoundMode bmode = BoundMode::Clamp) {
if (cont.size() == 0) {
return typename Container::value_type();
} else if (cont.size() == 1) {
return cont[0];
} else {
auto bound = getBound2(x, cont.size(), bmode);
auto weights = weightOp(bound.offset);
return cont[bound.i0] * weights[0] + cont[bound.i1] * weights[1];
}
}
template <typename Container, typename Pos, typename WeightOp>
typename Container::value_type listInterpolate4(
Container const& cont, Pos x, WeightOp weightOp, BoundMode bmode = BoundMode::Clamp) {
if (cont.size() == 0) {
return typename Container::value_type();
} else if (cont.size() == 1) {
return cont[0];
} else {
auto bound = getBound4(x, cont.size(), bmode);
auto weights = weightOp(bound.offset);
return cont[bound.i0] * weights[0] + cont[bound.i1] * weights[1] + cont[bound.i2] * weights[2]
+ cont[bound.i3] * weights[3];
}
}
// Returns an index value (not integer) that represents the value that, if
// passed in as an index to a simple linear interpolation of the given
// container, would yield the given value. (In other words, this goes from
// function space to index space on a list of points). Useful for doing
// interpolation on functions that are unevenly spaced. Given container must
// be sorted. If there is an ambiguity on points due to repeat points, will
// choose the lower-most of the points.
template <typename Iterator, typename Pos, typename Comp, typename PosGetter>
Pos inverseLinearInterpolateLower(Iterator begin, Iterator end, Pos t, Comp&& comp, PosGetter&& posGetter) {
// Container must be at least size 2 for this to make sense.
if (begin == end || std::next(begin) == end)
return Pos();
Iterator i = std::lower_bound(std::next(begin), std::prev(end), t, forward<Comp>(comp));
--i;
Pos min = posGetter(*i);
Pos max = posGetter(*(++i));
Pos ipos = Pos(std::distance(begin, --i));
Pos dist = max - min;
if (dist == 0)
return ipos;
else
return ipos + (t - min) / dist;
}
template <typename Iterator, typename Pos>
Pos inverseLinearInterpolateLower(Iterator begin, Iterator end, Pos t) {
return inverseLinearInterpolateLower(begin, end, t, std::less<Pos>(), identity());
}
// Same as inverseLinearInterpolateLower, except chooses the upper most of the
// points in the ambiguous case.
template <typename Iterator, typename Pos, typename Comp, typename PosGetter>
Pos inverseLinearInterpolateUpper(Iterator begin, Iterator end, Pos t, Comp&& comp, PosGetter&& posGetter) {
// Container must be at least size 2 for this to make sense.
if (begin == end || std::next(begin) == end)
return Pos();
Iterator i = std::upper_bound(std::next(begin), std::prev(end), t, forward<Comp>(comp));
--i;
Pos min = posGetter(*i);
Pos max = posGetter(*(++i));
Pos ipos = Pos(std::distance(begin, --i));
Pos dist = max - min;
if (dist == 0)
return ipos + 1;
else
return ipos + (t - min) / dist;
}
template <typename Iterator, typename Pos>
Pos inverseLinearInterpolateUpper(Iterator begin, Iterator end, Pos t) {
return inverseLinearInterpolateUpper(begin, end, t, std::less<Pos>(), identity());
}
template <typename XContainer, typename YContainer, typename PositionType, typename WeightOp>
typename YContainer::value_type parametricInterpolate2(XContainer const& xvals,
YContainer const& yvals,
PositionType const& position,
WeightOp weightOp,
BoundMode bmode) {
starAssert(xvals.size() != 0);
starAssert(xvals.size() == yvals.size());
if (yvals.size() == 1)
return yvals[0];
PositionType ipos = inverseLinearInterpolateLower(xvals.begin(), xvals.end(), position);
return listInterpolate2(yvals, ipos, weightOp, bmode);
}
template <typename XContainer, typename YContainer, typename PositionType, typename WeightOp>
typename YContainer::value_type parametricInterpolate4(XContainer const& xvals,
YContainer const& yvals,
PositionType const& position,
WeightOp weightOp,
BoundMode bmode) {
starAssert(xvals.size() != 0);
starAssert(xvals.size() == yvals.size());
if (yvals.size() == 1)
return yvals[0];
PositionType ipos = inverseLinearInterpolateLower(xvals.begin(), xvals.end(), position);
return listInterpolate4(yvals, ipos, weightOp, bmode);
}
}
#endif