osb/source/core/StarPoly.hpp

751 lines
21 KiB
C++
Raw Normal View History

2023-06-20 14:33:09 +10:00
#ifndef STAR_POLY_HPP
#define STAR_POLY_HPP
#include <numeric>
#include "StarRect.hpp"
namespace Star {
template <typename DataType>
class Polygon {
public:
typedef Vector<DataType, 2> Vertex;
typedef Star::Line<DataType, 2> Line;
typedef Star::Box<DataType, 2> Rect;
struct IntersectResult {
// Whether or not the two objects intersect
bool intersects;
// How much *this* poly must be moved in order to make them not intersect
// anymore
Vertex overlap;
};
struct LineIntersectResult {
// Point of intersection
Vertex point;
// t value at the point of intersection of the line that was checked
DataType along;
// Side that the line first intersected, if the line starts inside the
// polygon, this will not be set.
Maybe<size_t> intersectedSide;
};
typedef List<Vertex> VertexList;
typedef typename VertexList::iterator iterator;
typedef typename VertexList::const_iterator const_iterator;
static Polygon convexHull(VertexList points);
static Polygon clip(Polygon inputPoly, Polygon convexClipPoly);
// Creates a null polygon
Polygon();
Polygon(Polygon const& rhs);
Polygon(Polygon&& rhs);
template <typename DataType2>
explicit Polygon(Box<DataType2, 2> const& rect);
template <typename DataType2>
explicit Polygon(Polygon<DataType2> const& p2);
// This seems weird, but it isn't. SAT intersection works perfectly well
// with one Poly having only a single vertex.
explicit Polygon(Vertex const& coord);
// When specifying a polygon using this constructor the list should be in
// counterclockwise order.
explicit Polygon(VertexList const& vertexes);
Polygon(std::initializer_list<Vertex> vertexes);
bool isNull() const;
bool isConvex() const;
float convexArea() const;
void deduplicateVertexes(float maxDistance);
void add(Vertex const& a);
void remove(size_t i);
void clear();
VertexList const& vertexes() const;
VertexList& vertexes();
size_t sides() const;
Line side(size_t i) const;
DataType distance(Vertex const& c) const;
void translate(Vertex const& c);
void setCenter(Vertex const& c);
void rotate(DataType a, Vertex const& c = Vertex());
void scale(Vertex const& s, Vertex const& c = Vertex());
void scale(DataType s, Vertex const& c = Vertex());
void flipHorizontal(DataType horizontalPos = DataType());
void flipVertical(DataType verticalPos = DataType());
template <typename DataType2>
void transform(Matrix3<DataType2> const& transMat);
Vertex const& operator[](size_t i) const;
Vertex& operator[](size_t i);
bool operator==(Polygon const& rhs) const;
Polygon& operator=(Polygon const& rhs);
Polygon& operator=(Polygon&& rhs);
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
// vertex and normal wrap around so that i can never be out of range.
Vertex const& vertex(size_t i) const;
Vertex normal(size_t i) const;
Vertex center() const;
// a point in the volume, within min and max y, moved downwards to be a half
// width from the bottom (if that point is within a half width from the
// top, center() is returned)
Vertex bottomCenter() const;
Rect boundBox() const;
// Determine winding number of the given point.
int windingNumber(Vertex const& p) const;
bool contains(Vertex const& p) const;
// Normal SAT intersection finding the shortest separation of two convex
// polys.
IntersectResult satIntersection(Polygon const& p) const;
// A directional version of a SAT intersection that will only separate
// parallel to the given direction. If choseSign is true, then the
// separation can occur either with the given direction or opposite it, but
// still parallel. If it is false, separation will always occur in the given
// direction only.
IntersectResult directionalSatIntersection(Polygon const& p, Vertex const& direction, bool chooseSign) const;
// Returns the closest intersection with the poly, if any.
Maybe<LineIntersectResult> lineIntersection(Line const& l) const;
bool intersects(Polygon const& p) const;
bool intersects(Line const& l) const;
private:
// i must be between 0 and m_vertexes.size() - 1
Line sideAt(size_t i) const;
VertexList m_vertexes;
};
template <typename DataType>
std::ostream& operator<<(std::ostream& os, Polygon<DataType> const& poly);
typedef Polygon<int> PolyI;
typedef Polygon<float> PolyF;
typedef Polygon<double> PolyD;
template <typename DataType>
Polygon<DataType> Polygon<DataType>::convexHull(VertexList points) {
if (points.empty())
return {};
auto cross = [](Vertex o, Vertex a, Vertex b) {
return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);
};
sort(points);
VertexList lower;
for (auto const& point : points) {
while (lower.size() >= 2 && cross(lower[lower.size() - 2], lower[lower.size() - 1], point) <= 0)
lower.removeLast();
lower.append(point);
}
VertexList upper;
for (auto const& point : reverseIterate(points)) {
while (upper.size() >= 2 && cross(upper[upper.size() - 2], upper[upper.size() - 1], point) <= 0)
upper.removeLast();
upper.append(point);
}
upper.removeLast();
lower.removeLast();
lower.appendAll(take(upper));
return Polygon<DataType>(move(lower));
}
template <typename DataType>
Polygon<DataType> Polygon<DataType>::clip(Polygon inputPoly, Polygon convexClipPoly) {
if (inputPoly.sides() == 0)
return inputPoly;
auto insideEdge = [](Line const& edge, Vertex const& p) {
return ((edge.max() - edge.min()) ^ (p - edge.min())) > 0;
};
VertexList outputVertexes = take(inputPoly.m_vertexes);
for (size_t i = 0; i < convexClipPoly.sides(); ++i) {
if (outputVertexes.empty())
break;
Line clipEdge = convexClipPoly.sideAt(i);
VertexList inputVertexes = take(outputVertexes);
Vertex s = inputVertexes.last();
for (Vertex e : inputVertexes) {
if (insideEdge(clipEdge, e)) {
if (!insideEdge(clipEdge, s))
outputVertexes.append(clipEdge.intersection(Line(s, e)).point);
outputVertexes.append(e);
} else if (insideEdge(clipEdge, s)) {
outputVertexes.append(clipEdge.intersection(Line(s, e)).point);
}
s = e;
}
}
return Polygon(move(outputVertexes));
}
template <typename DataType>
Polygon<DataType>::Polygon() {}
template <typename DataType>
Polygon<DataType>::Polygon(Polygon const& rhs)
: m_vertexes(rhs.m_vertexes) {}
template <typename DataType>
Polygon<DataType>::Polygon(Polygon&& rhs)
: m_vertexes(move(rhs.m_vertexes)) {}
template <typename DataType>
template <typename DataType2>
Polygon<DataType>::Polygon(Box<DataType2, 2> const& rect) {
m_vertexes = {
Vertex(rect.min()), Vertex(rect.max()[0], rect.min()[1]), Vertex(rect.max()), Vertex(rect.min()[0], rect.max()[1])};
}
template <typename DataType>
template <typename DataType2>
Polygon<DataType>::Polygon(Polygon<DataType2> const& p2) {
for (auto const& v : p2)
m_vertexes.push_back(Vertex(v));
}
template <typename DataType>
Polygon<DataType>::Polygon(Vertex const& coord) {
m_vertexes.push_back(coord);
}
template <typename DataType>
Polygon<DataType>::Polygon(VertexList const& vertexes)
: m_vertexes(vertexes) {}
template <typename DataType>
Polygon<DataType>::Polygon(std::initializer_list<Vertex> vertexes)
: m_vertexes(vertexes) {}
template <typename DataType>
bool Polygon<DataType>::isNull() const {
return m_vertexes.empty();
}
template <typename DataType>
bool Polygon<DataType>::isConvex() const {
if (sides() < 2)
return true;
for (unsigned i = 0; i < sides(); ++i) {
if ((side(i + 1).diff() ^ side(i).diff()) > 0)
return false;
}
return true;
}
template <typename DataType>
float Polygon<DataType>::convexArea() const {
float area = 0.0f;
for (size_t i = 0; i < m_vertexes.size(); ++i) {
Vertex const& v1 = m_vertexes[i];
Vertex const& v2 = i == m_vertexes.size() - 1 ? m_vertexes[0] : m_vertexes[i + 1];
area += 0.5f * (v1[0] * v2[1] - v1[1] * v2[0]);
}
return area;
}
template <typename DataType>
void Polygon<DataType>::deduplicateVertexes(float maxDistance) {
if (m_vertexes.empty())
return;
float distSquared = square(maxDistance);
VertexList newVertexes = {m_vertexes[0]};
for (size_t i = 1; i < m_vertexes.size(); ++i) {
if (vmagSquared(m_vertexes[i] - newVertexes.last()) > distSquared)
newVertexes.append(m_vertexes[i]);
}
if (vmagSquared(newVertexes.first() - newVertexes.last()) <= distSquared)
newVertexes.removeLast();
m_vertexes = move(newVertexes);
}
template <typename DataType>
void Polygon<DataType>::add(Vertex const& a) {
m_vertexes.push_back(a);
}
template <typename DataType>
void Polygon<DataType>::remove(size_t i) {
auto it = begin() + i % sides();
m_vertexes.erase(it);
}
template <typename DataType>
void Polygon<DataType>::clear() {
m_vertexes.clear();
}
template <typename DataType>
typename Polygon<DataType>::VertexList const& Polygon<DataType>::vertexes() const {
return m_vertexes;
}
template <typename DataType>
typename Polygon<DataType>::VertexList& Polygon<DataType>::vertexes() {
return m_vertexes;
}
template <typename DataType>
size_t Polygon<DataType>::sides() const {
return m_vertexes.size();
}
template <typename DataType>
typename Polygon<DataType>::Line Polygon<DataType>::side(size_t i) const {
return sideAt(i % m_vertexes.size());
}
template <typename DataType>
DataType Polygon<DataType>::distance(Vertex const& c) const {
if (contains(c))
return 0;
DataType dist = highest<DataType>();
for (size_t i = 0; i < m_vertexes.size(); ++i)
dist = min(dist, sideAt(i).distanceTo(c));
return dist;
}
template <typename DataType>
void Polygon<DataType>::translate(Vertex const& c) {
for (auto& v : m_vertexes)
v += c;
}
template <typename DataType>
void Polygon<DataType>::setCenter(Vertex const& c) {
translate(c - center());
}
template <typename DataType>
void Polygon<DataType>::rotate(DataType a, Vertex const& c) {
for (auto& v : m_vertexes)
v = (v - c).rotate(a) + c;
}
template <typename DataType>
void Polygon<DataType>::scale(Vertex const& s, Vertex const& c) {
for (auto& v : m_vertexes)
v = vmult((v - c), s) + c;
}
template <typename DataType>
void Polygon<DataType>::scale(DataType s, Vertex const& c) {
scale(Vertex::filled(s), c);
}
template <typename DataType>
void Polygon<DataType>::flipHorizontal(DataType horizontalPos) {
scale(Vertex(-1, 1), Vertex(horizontalPos, 0));
// Reverse vertexes to make sure poly remains counter-clockwise after flip.
std::reverse(m_vertexes.begin(), m_vertexes.end());
}
template <typename DataType>
void Polygon<DataType>::flipVertical(DataType verticalPos) {
scale(Vertex(1, -1), Vertex(0, verticalPos));
// Reverse vertexes to make sure poly remains counter-clockwise after flip.
std::reverse(m_vertexes.begin(), m_vertexes.end());
}
template <typename DataType>
template <typename DataType2>
void Polygon<DataType>::transform(Matrix3<DataType2> const& transMat) {
for (auto& v : m_vertexes)
v = transMat.transformVec2(v);
}
template <typename DataType>
typename Polygon<DataType>::Vertex const& Polygon<DataType>::operator[](size_t i) const {
return m_vertexes[i];
}
template <typename DataType>
typename Polygon<DataType>::Vertex& Polygon<DataType>::operator[](size_t i) {
return m_vertexes[i];
}
template <typename DataType>
bool Polygon<DataType>::operator==(Polygon<DataType> const& rhs) const {
return m_vertexes == rhs.m_vertexes;
}
template <typename DataType>
Polygon<DataType>& Polygon<DataType>::operator=(Polygon const& rhs) {
m_vertexes = rhs.m_vertexes;
return *this;
}
template <typename DataType>
Polygon<DataType>& Polygon<DataType>::operator=(Polygon&& rhs) {
m_vertexes = move(rhs.m_vertexes);
return *this;
}
template <typename DataType>
typename Polygon<DataType>::iterator Polygon<DataType>::begin() {
return m_vertexes.begin();
}
template <typename DataType>
typename Polygon<DataType>::const_iterator Polygon<DataType>::begin() const {
return m_vertexes.begin();
}
template <typename DataType>
typename Polygon<DataType>::iterator Polygon<DataType>::end() {
return m_vertexes.end();
}
template <typename DataType>
typename Polygon<DataType>::const_iterator Polygon<DataType>::end() const {
return m_vertexes.end();
}
template <typename DataType>
typename Polygon<DataType>::Vertex const& Polygon<DataType>::vertex(size_t i) const {
return m_vertexes[i % m_vertexes.size()];
}
template <typename DataType>
typename Polygon<DataType>::Vertex Polygon<DataType>::normal(size_t i) const {
Vertex diff = side(i).diff();
if (diff == Vertex())
return Vertex();
return diff.rot90().normalized();
}
template <typename DataType>
typename Polygon<DataType>::Vertex Polygon<DataType>::center() const {
return std::accumulate(m_vertexes.begin(), m_vertexes.end(), Vertex()) / (DataType)m_vertexes.size();
}
template <typename DataType>
typename Polygon<DataType>::Vertex Polygon<DataType>::bottomCenter() const {
if (m_vertexes.size() == 0)
return Vertex();
Polygon<DataType>::Vertex center = std::accumulate(m_vertexes.begin(), m_vertexes.end(), Vertex()) / (DataType)m_vertexes.size();
Polygon<DataType>::Vertex bottomLeft = *std::min_element(m_vertexes.begin(), m_vertexes.end());
Polygon<DataType>::Vertex topRight = *std::max_element(m_vertexes.begin(), m_vertexes.end());
Polygon<DataType>::Vertex size = topRight - bottomLeft;
if (size.x() > size.y())
return center;
return Polygon<DataType>::Vertex(center.x(), bottomLeft.y() + size.x() / 2.0f);
}
template <typename DataType>
auto Polygon<DataType>::boundBox() const -> Rect {
auto bounds = Rect::null();
for (auto const& v : m_vertexes)
bounds.combine(v);
return bounds;
}
template <typename DataType>
int Polygon<DataType>::windingNumber(Vertex const& p) const {
auto isLeft = [](Vertex const& p0, Vertex const& p1, Vertex const& p2) {
return ((p1[0] - p0[0]) * (p2[1] - p0[1]) - (p2[0] - p0[0]) * (p1[1] - p0[1]));
};
// the winding number counter
int wn = 0;
// loop through all edges of the polygon
for (size_t i = 0; i < m_vertexes.size(); ++i) {
auto const& first = m_vertexes[i];
auto const& second = i == m_vertexes.size() - 1 ? m_vertexes[0] : m_vertexes[i + 1];
// start y <= p[1]
if (first[1] <= p[1]) {
if (second[1] > p[1]) {
// an upward crossing
if (isLeft(first, second, p) > 0) {
// p left of edge
// have a valid up intersect
++wn;
}
}
} else {
// start y > p[1] (no test needed)
if (second[1] <= p[1]) {
// a downward crossing
if (isLeft(first, second, p) < 0) {
// p right of edge
// have a valid down intersect
--wn;
}
}
}
}
return wn;
}
template <typename DataType>
bool Polygon<DataType>::contains(Vertex const& p) const {
return windingNumber(p) != 0;
}
template <typename DataType>
typename Polygon<DataType>::IntersectResult Polygon<DataType>::satIntersection(Polygon const& p) const {
// "Accumulates" the shortest separating distance and axis of this poly and
// the given poly, after projecting all the vertexes of each poly onto a
// given axis. Used by SAT intersection, meant to be called with each tested
// axis.
auto accumSeparator = [this](Polygon const& p, Vertex const& axis, DataType& shortestOverlap, Vertex& finalSepDir) {
DataType myProjectionLow = std::numeric_limits<DataType>::max();
DataType targetProjectionHigh = std::numeric_limits<DataType>::lowest();
for (auto const& v : m_vertexes) {
DataType p = axis[0] * v[0] + axis[1] * v[1];
if (p < myProjectionLow)
myProjectionLow = p;
}
for (auto const& v : p.m_vertexes) {
DataType p = axis[0] * v[0] + axis[1] * v[1];
if (p > targetProjectionHigh)
targetProjectionHigh = p;
}
float overlap = targetProjectionHigh - myProjectionLow;
if (overlap < shortestOverlap) {
shortestOverlap = overlap;
finalSepDir = axis;
}
};
DataType overlap = std::numeric_limits<DataType>::max();
Vertex separatingDir = Vertex();
if (!m_vertexes.empty()) {
Vertex pv = m_vertexes[m_vertexes.size() - 1];
for (auto const& v : m_vertexes) {
Vertex sideNormal = pv - v;
if (sideNormal != Vertex()) {
sideNormal = sideNormal.rot90().normalized();
accumSeparator(p, -sideNormal, overlap, separatingDir);
}
pv = v;
}
}
if (!p.m_vertexes.empty()) {
Vertex pv = p.m_vertexes[p.m_vertexes.size() - 1];
for (auto const& v : p.m_vertexes) {
Vertex sideNormal = pv - v;
if (sideNormal != Vertex()) {
sideNormal = sideNormal.rot90().normalized();
accumSeparator(p, sideNormal, overlap, separatingDir);
}
pv = v;
}
}
IntersectResult isect;
isect.intersects = (overlap > 0);
isect.overlap = separatingDir * overlap;
return isect;
}
template <typename DataType>
typename Polygon<DataType>::IntersectResult Polygon<DataType>::directionalSatIntersection(
Polygon const& p, Vertex const& direction, bool chooseSign) const {
// A "directional" version of accumSeparator, that when intersecting only
// ever tries to separate in the given direction.
auto directionalAccumSeparator = [this](Polygon const& p, Vertex axis, DataType& shortestOverlap,
Vertex const& separatingDir, Vertex& finalSepDir, bool chooseDir) {
DataType myProjectionLow = std::numeric_limits<DataType>::max();
DataType targetProjectionHigh = std::numeric_limits<DataType>::lowest();
for (auto const& v : m_vertexes) {
DataType p = axis[0] * v[0] + axis[1] * v[1];
if (p < myProjectionLow)
myProjectionLow = p;
}
for (auto const& v : p.m_vertexes) {
DataType p = axis[0] * v[0] + axis[1] * v[1];
if (p > targetProjectionHigh)
targetProjectionHigh = p;
}
float overlap = targetProjectionHigh - myProjectionLow;
// Separation was found, skip the rest of the method.
if (overlap <= 0) {
if (overlap < shortestOverlap) {
shortestOverlap = overlap;
finalSepDir = axis;
}
return;
}
DataType axisDot = separatingDir * axis;
// Now, if we don't have separation and the axis is perpendicular to
// requested, we can do nothing, return.
if (axisDot == 0)
return;
// Separate along the given separating direction enough to separate as
// determined by this axis.
DataType projOverlap = overlap / axisDot;
if (chooseDir) {
DataType absProjOverlap = (projOverlap >= 0) ? projOverlap : -projOverlap;
if (absProjOverlap < shortestOverlap) {
shortestOverlap = absProjOverlap;
finalSepDir = separatingDir * (projOverlap / absProjOverlap);
}
} else if (projOverlap >= 0) {
if (projOverlap < shortestOverlap) {
shortestOverlap = projOverlap;
finalSepDir = separatingDir;
}
}
};
DataType overlap = std::numeric_limits<DataType>::max();
Vertex separatingDir = Vertex();
if (!m_vertexes.empty()) {
Vertex pv = m_vertexes[m_vertexes.size() - 1];
for (auto const& v : m_vertexes) {
Vertex sideNormal = pv - v;
if (sideNormal != Vertex()) {
sideNormal = sideNormal.rot90().normalized();
directionalAccumSeparator(p, -sideNormal, overlap, direction, separatingDir, chooseSign);
}
pv = v;
}
}
if (!p.m_vertexes.empty()) {
Vertex pv = p.m_vertexes[p.m_vertexes.size() - 1];
for (auto const& v : p.m_vertexes) {
Vertex sideNormal = pv - v;
if (sideNormal != Vertex()) {
sideNormal = sideNormal.rot90().normalized();
directionalAccumSeparator(p, sideNormal, overlap, direction, separatingDir, chooseSign);
}
pv = v;
}
}
IntersectResult isect;
isect.intersects = (overlap > 0);
isect.overlap = separatingDir * overlap;
return isect;
}
template <typename DataType>
auto Polygon<DataType>::lineIntersection(Line const& l) const -> Maybe<LineIntersectResult> {
if (contains(l.min()))
return LineIntersectResult{l.min(), DataType(0), {}};
Maybe<LineIntersectResult> nearestIntersection;
for (size_t i = 0; i < m_vertexes.size(); ++i) {
auto intersection = l.intersection(sideAt(i));
if (intersection.intersects) {
if (!nearestIntersection || intersection.t < nearestIntersection->along)
nearestIntersection = LineIntersectResult{intersection.point, intersection.t, i};
}
}
return nearestIntersection;
}
template <typename DataType>
bool Polygon<DataType>::intersects(Polygon const& p) const {
return satIntersection(p).intersects;
}
template <typename DataType>
bool Polygon<DataType>::intersects(Line const& l) const {
if (contains(l.min()) || contains(l.max()))
return true;
for (size_t i = 0; i < m_vertexes.size(); ++i) {
if (l.intersects(sideAt(i)))
return true;
}
return false;
}
template <typename DataType>
auto Polygon<DataType>::sideAt(size_t i) const -> Line {
if (i == m_vertexes.size() - 1)
return Line(m_vertexes[i], m_vertexes[0]);
else
return Line(m_vertexes[i], m_vertexes[i + 1]);
}
template <typename DataType>
std::ostream& operator<<(std::ostream& os, Polygon<DataType> const& poly) {
os << "[Poly: ";
for (auto i = poly.begin(); i != poly.end(); ++i) {
if (i != poly.begin())
os << ", ";
os << *i;
}
os << "]";
return os;
}
}
#endif