osb/source/core/StarPythonic.hpp

610 lines
15 KiB
C++
Raw Normal View History

2023-06-20 04:33:09 +00:00
#ifndef STAR_PYTHONIC_HPP
#define STAR_PYTHONIC_HPP
#include "StarAlgorithm.hpp"
namespace Star {
// any and all
template <typename Iterator, typename Functor>
bool any(Iterator iterBegin, Iterator iterEnd, Functor const& f) {
for (; iterBegin != iterEnd; iterBegin++)
if (f(*iterBegin))
return true;
return false;
}
template <typename Iterator>
bool any(Iterator const& iterBegin, Iterator const& iterEnd) {
typedef typename std::iterator_traits<Iterator>::value_type IteratorValue;
std::function<bool(IteratorValue)> compare = [](IteratorValue const& i) { return (bool)i; };
return any(iterBegin, iterEnd, compare);
}
template <typename Iterable, typename Functor>
bool any(Iterable const& iter, Functor const& f) {
return any(std::begin(iter), std::end(iter), f);
}
template <typename Iterable>
bool any(Iterable const& iter) {
typedef decltype(*std::begin(iter)) IteratorValue;
std::function<bool(IteratorValue)> compare = [](IteratorValue const& i) { return (bool)i; };
return any(std::begin(iter), std::end(iter), compare);
}
template <typename Iterator, typename Functor>
bool all(Iterator iterBegin, Iterator iterEnd, Functor const& f) {
for (; iterBegin != iterEnd; iterBegin++)
if (!f(*iterBegin))
return false;
return true;
}
template <typename Iterator>
bool all(Iterator const& iterBegin, Iterator const& iterEnd) {
typedef typename std::iterator_traits<Iterator>::value_type IteratorValue;
std::function<bool(IteratorValue)> compare = [](IteratorValue const& i) { return (bool)i; };
return all(iterBegin, iterEnd, compare);
}
template <typename Iterable, typename Functor>
bool all(Iterable const& iter, Functor const& f) {
return all(std::begin(iter), std::end(iter), f);
}
template <typename Iterable>
bool all(Iterable const& iter) {
typedef decltype(*std::begin(iter)) IteratorValue;
std::function<bool(IteratorValue)> compare = [](IteratorValue const& i) { return (bool)i; };
return all(std::begin(iter), std::end(iter), compare);
}
// Python style container slicing
struct SliceIndex {
SliceIndex() : index(0), given(false) {}
SliceIndex(int i) : index(i), given(true) {}
int index;
bool given;
};
SliceIndex const SliceNil = SliceIndex();
// T must have operator[](int), size(), and
// push_back(typeof T::operator[](int()))
template <typename Res, typename In>
Res slice(In const& r, SliceIndex a, SliceIndex b = SliceIndex(), int j = 1) {
int size = (int)r.size();
int start, end;
// Throw exception on j == 0?
if (j == 0 || size == 0)
return Res();
if (!a.given) {
if (j > 0)
start = 0;
else
start = size - 1;
} else if (a.index < 0) {
if (-a.index > size - 1)
start = 0;
else
start = size - -a.index;
} else {
if (a.index > size)
start = size;
else
start = a.index;
}
if (!b.given) {
if (j > 0)
end = size;
else
end = -1;
} else if (b.index < 0) {
if (-b.index > size - 1) {
end = -1;
} else {
end = size - -b.index;
}
} else {
if (b.index > size - 1) {
end = size;
} else {
end = b.index;
}
}
if (start < end && j < 0)
return Res();
if (start > end && j > 0)
return Res();
Res returnSlice;
int i;
for (i = start; i < end; i += j)
returnSlice.push_back(r[i]);
return returnSlice;
}
template <typename T>
T slice(T const& r, SliceIndex a, SliceIndex b = SliceIndex(), int j = 1) {
return slice<T, T>(r, a, b, j);
}
// ZIP
// Wraps a regular iterator and returns a singleton tuple, as well as
// supporting the iterator protocol that the zip iterator code expects.
template <typename IteratorT>
class ZipWrapperIterator {
private:
IteratorT current;
IteratorT last;
bool atEnd;
public:
typedef IteratorT Iterator;
typedef decltype(*std::declval<Iterator>()) IteratorValue;
typedef tuple<IteratorValue> value_type;
ZipWrapperIterator() : atEnd(true) {}
ZipWrapperIterator(Iterator current, Iterator last) : current(current), last(last) {
atEnd = current == last;
}
ZipWrapperIterator operator++() {
if (!atEnd) {
++current;
atEnd = current == last;
}
return *this;
}
value_type operator*() const {
return std::tuple<IteratorValue>(*current);
}
bool operator==(ZipWrapperIterator const& rhs) const {
return (atEnd && rhs.atEnd) || (!atEnd && !rhs.atEnd && current == rhs.current && last == rhs.last);
}
bool operator!=(ZipWrapperIterator const& rhs) const {
return !(*this == rhs);
}
explicit operator bool() const {
return !atEnd;
}
ZipWrapperIterator begin() const {
return *this;
}
ZipWrapperIterator end() const {
return ZipWrapperIterator();
}
};
template <typename IteratorT>
ZipWrapperIterator<IteratorT> makeZipWrapperIterator(IteratorT current, IteratorT end) {
return ZipWrapperIterator<IteratorT>(current, end);
}
// Takes two ZipIterators / ZipTupleIterators and concatenates them into a
// single iterator that returns the concatenated tuple.
template <typename TailIteratorT, typename HeadIteratorT>
class ZipTupleIterator {
private:
TailIteratorT tailIterator;
HeadIteratorT headIterator;
bool atEnd;
public:
typedef TailIteratorT TailIterator;
typedef HeadIteratorT HeadIterator;
typedef decltype(*TailIterator()) TailType;
typedef decltype(*HeadIterator()) HeadType;
typedef decltype(std::tuple_cat(std::declval<TailType>(), std::declval<HeadType>())) value_type;
ZipTupleIterator() : atEnd(true) {}
ZipTupleIterator(TailIterator tailIterator, HeadIterator headIterator)
: tailIterator(tailIterator), headIterator(headIterator) {
atEnd = tailIterator == TailIterator() || headIterator == HeadIterator();
}
ZipTupleIterator operator++() {
if (!atEnd) {
++tailIterator;
++headIterator;
atEnd = tailIterator == TailIterator() || headIterator == HeadIterator();
}
return *this;
}
value_type operator*() const {
return std::tuple_cat(*tailIterator, *headIterator);
}
bool operator==(ZipTupleIterator const& rhs) const {
return (atEnd && rhs.atEnd)
|| (!atEnd && !rhs.atEnd && tailIterator == rhs.tailIterator && headIterator == rhs.headIterator);
}
bool operator!=(ZipTupleIterator const& rhs) const {
return !(*this == rhs);
}
explicit operator bool() const {
return !atEnd;
}
ZipTupleIterator begin() const {
return *this;
}
ZipTupleIterator end() const {
return ZipTupleIterator();
}
};
template <typename HeadIteratorT, typename TailIteratorT>
ZipTupleIterator<HeadIteratorT, TailIteratorT> makeZipTupleIterator(HeadIteratorT head, TailIteratorT tail) {
return ZipTupleIterator<HeadIteratorT, TailIteratorT>(head, tail);
}
template <typename Container, typename... Rest>
struct zipIteratorReturn {
typedef ZipTupleIterator<typename zipIteratorReturn<Container>::type, typename zipIteratorReturn<Rest...>::type> type;
};
template <typename Container>
struct zipIteratorReturn<Container> {
typedef ZipWrapperIterator<decltype(std::declval<Container>().begin())> type;
};
template <typename Container>
typename zipIteratorReturn<Container>::type zipIterator(Container& container) {
return makeZipWrapperIterator(container.begin(), container.end());
}
template <typename Container, typename... Rest>
typename zipIteratorReturn<Container, Rest...>::type zipIterator(Container& container, Rest&... rest) {
return makeZipTupleIterator(makeZipWrapperIterator(container.begin(), container.end()), zipIterator(rest...));
}
// END ZIP
// RANGE
namespace RangeHelper {
template <typename Diff>
typename std::enable_if<std::is_unsigned<Diff>::value, bool>::type checkIfDiffLessThanZero(Diff) {
return false;
}
template <typename Diff>
typename std::enable_if<!std::is_unsigned<Diff>::value, bool>::type checkIfDiffLessThanZero(Diff diff) {
return diff < 0;
}
}
STAR_EXCEPTION(RangeException, StarException);
template <typename Value, typename Diff = int>
class RangeIterator {
using iterator_category = std::random_access_iterator_tag;
using value_type = Value;
using difference_type = Diff;
using pointer = Value*;
using reference = Value&;
2023-06-20 04:33:09 +00:00
public:
RangeIterator() : m_start(), m_end(), m_diff(1), m_current(), m_stop(true) {}
RangeIterator(Value min, Value max, Diff diff)
: m_start(min), m_end(max), m_diff(diff), m_current(min), m_stop(false) {
sanity();
}
RangeIterator(Value min, Value max) : m_start(min), m_end(max), m_diff(1), m_current(min), m_stop(false) {
sanity();
}
RangeIterator(Value max) : m_start(), m_end(max), m_diff(1), m_current(), m_stop(false) {
sanity();
}
RangeIterator(RangeIterator const& rhs) {
copy(rhs);
}
RangeIterator& operator=(RangeIterator const& rhs) {
copy(rhs);
return *this;
}
RangeIterator& operator+=(Diff steps) {
if ((applySteps(m_current, m_diff * steps) >= m_end) != (RangeHelper::checkIfDiffLessThanZero<Diff>(m_diff))) {
if (!m_stop) {
Diff stepsLeft = stepsBetween(m_current, m_end);
m_current = applySteps(m_current, stepsLeft * m_diff);
m_stop = true;
}
} else {
m_current = applySteps(m_current, steps * m_diff);
}
return *this;
}
RangeIterator operator-=(Diff steps) {
2023-06-20 04:33:09 +00:00
m_stop = false;
sanity();
if (applySteps(m_current, -(m_diff * steps)) < m_start)
m_current = m_start;
else
m_current = applySteps(m_current, -(m_diff * steps));
return *this;
}
Value operator*() const {
return m_current;
}
Value const* operator->() const {
return &m_current;
}
Value operator[](unsigned rhs) const {
// Should return at maximum, the value that this iterator will normally
// reach when at end().
rhs = std::min(rhs, stepsBetween(m_start, m_end) + 1);
return m_start + rhs * m_diff;
}
RangeIterator& operator++() {
return operator+=(1);
}
RangeIterator& operator--() {
return operator-=(1);
}
RangeIterator operator++(int) {
RangeIterator tmp(*this);
++this;
return tmp;
}
RangeIterator operator--(int) {
RangeIterator tmp(*this);
--this;
return tmp;
}
RangeIterator operator+(Diff steps) const {
RangeIterator copy(*this);
copy += steps;
return copy;
}
RangeIterator operator-(Diff steps) const {
RangeIterator copy(*this);
copy -= steps;
return copy;
}
int operator-(RangeIterator const& rhs) const {
if (!sameClass(rhs))
throw RangeException("Attempted to subtract incompatible ranges.");
return stepsBetween(rhs.m_current, m_current);
}
friend RangeIterator operator+(Diff lhs, RangeIterator const& rhs) {
return rhs + lhs;
}
friend RangeIterator operator-(Diff lhs, RangeIterator const& rhs) {
return rhs - lhs;
}
bool operator==(RangeIterator const& rhs) const {
return (sameClass(rhs) && m_current == rhs.m_current && m_stop == rhs.m_stop);
}
bool operator!=(RangeIterator const& rhs) const {
return !(*this == rhs);
}
bool operator<(RangeIterator const& rhs) const {
return std::tie(m_start, m_end, m_diff, m_current) < std::tie(rhs.m_start, rhs.m_end, rhs.m_diff, rhs.m_current);
}
bool operator<=(RangeIterator const& rhs) const {
return (*this == rhs) || (*this < rhs);
}
bool operator>=(RangeIterator const& rhs) const {
return !(*this < rhs);
}
bool operator>(RangeIterator const& rhs) const {
return !(*this <= rhs);
}
RangeIterator begin() const {
return RangeIterator(m_start, m_end, m_diff);
}
RangeIterator end() const {
Diff steps = stepsBetween(m_start, m_end);
RangeIterator res(m_start, m_end, m_diff);
res += steps;
return res;
}
private:
void copy(RangeIterator const& copy) {
m_start = copy.m_start;
m_end = copy.m_end;
m_diff = copy.m_diff;
m_current = copy.m_current;
m_stop = copy.m_stop;
sanity();
}
void sanity() {
if (m_diff == 0)
throw RangeException("Invalid difference in range function.");
if ((m_end < m_start) != (RangeHelper::checkIfDiffLessThanZero<Diff>(m_diff))) {
if (RangeHelper::checkIfDiffLessThanZero<Diff>(m_diff))
throw RangeException("Start cannot be less than end if diff is negative.");
throw RangeException("Max cannot be less than min.");
}
if (m_end == m_start)
m_stop = true;
}
bool sameClass(RangeIterator const& rhs) const {
return m_start == rhs.m_start && m_end == rhs.m_end && m_diff == rhs.m_diff;
}
Diff stepsBetween(Value start, Value end) const {
return ((Diff)end - (Diff)start) / m_diff;
}
Value applySteps(Value start, Diff travel) const {
return (Value)((Diff)start + travel);
}
Value m_start;
Value m_end;
Diff m_diff;
Value m_current;
bool m_stop;
};
template <typename Numeric, typename Diff>
RangeIterator<Numeric, Diff> range(Numeric min, Numeric max, Diff diff) {
return RangeIterator<Numeric, Diff>(min, max, diff);
}
template <typename Numeric, typename Diff = int>
RangeIterator<Numeric, Diff> range(Numeric max) {
return RangeIterator<Numeric, Diff>(max);
}
template <typename Numeric, typename Diff = int>
RangeIterator<Numeric, Diff> range(Numeric min, Numeric max) {
return RangeIterator<Numeric, Diff>(min, max);
}
template <typename Numeric, typename Diff>
RangeIterator<Numeric, Diff> rangeInclusive(Numeric min, Numeric max, Diff diff) {
return RangeIterator<Numeric, Diff>(min, (Numeric)((Diff)max + 1), diff);
}
template <typename Numeric, typename Diff = int>
RangeIterator<Numeric, Diff> rangeInclusive(Numeric max) {
return RangeIterator<Numeric, Diff>((Numeric)((Diff)max + 1));
}
template <typename Numeric, typename Diff = int>
RangeIterator<Numeric, Diff> rangeInclusive(Numeric min, Numeric max) {
return RangeIterator<Numeric, Diff>(min, (Numeric)((Diff)max + 1));
}
// END RANGE
// Wraps a forward-iterator to produce {value, index} pairs, similar to
// python's enumerate()
template <typename Iterator>
struct EnumerateIterator {
private:
Iterator current;
Iterator last;
size_t index;
bool atEnd;
public:
typedef decltype(*std::declval<Iterator>()) IteratorValue;
typedef pair<IteratorValue&, size_t> value_type;
EnumerateIterator() : index(0), atEnd(true) {}
EnumerateIterator(Iterator begin, Iterator end) : current(begin), last(end), index(0) {
atEnd = current == last;
}
EnumerateIterator begin() const {
return *this;
}
EnumerateIterator end() const {
return EnumerateIterator();
}
EnumerateIterator operator++() {
if (!atEnd) {
++current;
++index;
atEnd = current == last;
}
return *this;
}
value_type operator*() const {
return {*current, index};
}
bool operator==(EnumerateIterator const& rhs) const {
return (atEnd && rhs.atEnd) || (!atEnd && !rhs.atEnd && current == rhs.current && last == rhs.last);
}
bool operator!=(EnumerateIterator const& rhs) const {
return !(*this == rhs);
}
explicit operator bool() const {
return !atEnd;
}
};
template <typename Iterable>
EnumerateIterator<decltype(std::declval<Iterable>().begin())> enumerateIterator(Iterable& list) {
return EnumerateIterator<decltype(std::declval<Iterable>().begin())>(list.begin(), list.end());
}
template <typename ResultContainer, typename Iterable>
ResultContainer enumerateConstruct(Iterable&& list) {
ResultContainer res;
for (auto el : enumerateIterator(list))
res.push_back(std::move(el));
2023-06-20 04:33:09 +00:00
return res;
}
}
#endif