osb/source/core/StarMultiArray.hpp

514 lines
16 KiB
C++
Raw Normal View History

2023-06-20 04:33:09 +00:00
#ifndef STAR_MULTI_ARRAY_HPP
#define STAR_MULTI_ARRAY_HPP
#include "StarArray.hpp"
#include "StarList.hpp"
namespace Star {
STAR_EXCEPTION(MultiArrayException, StarException);
// Multidimensional array class that wraps a vector as a simple contiguous N
// dimensional array. Values are stored so that the highest dimension is the
// dimension with stride 0, and the lowest dimension has the largest stride.
//
// Due to usage of std::vector, ElementT = bool means that the user must use
// set() and get() rather than operator()
template <typename ElementT, size_t RankN>
class MultiArray {
public:
typedef List<ElementT> Storage;
typedef ElementT Element;
static size_t const Rank = RankN;
typedef Array<size_t, Rank> IndexArray;
typedef Array<size_t, Rank> SizeArray;
typedef typename Storage::iterator iterator;
typedef typename Storage::const_iterator const_iterator;
typedef Element value_type;
MultiArray();
template <typename... T>
explicit MultiArray(size_t i, T... rest);
explicit MultiArray(SizeArray const& shape);
explicit MultiArray(SizeArray const& shape, Element const& c);
SizeArray const& size() const;
size_t size(size_t dimension) const;
void clear();
void resize(SizeArray const& shape);
void resize(SizeArray const& shape, Element const& c);
template <typename... T>
void resize(size_t i, T... rest);
void fill(Element const& element);
// Does not preserve previous element position, array contents will be
// invalid.
void setSize(SizeArray const& shape);
void setSize(SizeArray const& shape, Element const& c);
template <typename... T>
void setSize(size_t i, T... rest);
Element& operator()(IndexArray const& index);
Element const& operator()(IndexArray const& index) const;
template <typename... T>
Element& operator()(size_t i1, T... rest);
template <typename... T>
Element const& operator()(size_t i1, T... rest) const;
// Throws exception if out of bounds
Element& at(IndexArray const& index);
Element const& at(IndexArray const& index) const;
template <typename... T>
Element& at(size_t i1, T... rest);
template <typename... T>
Element const& at(size_t i1, T... rest) const;
// Throws an exception of out of bounds
void set(IndexArray const& index, Element element);
// Returns default element if out of bounds.
Element get(IndexArray const& index, Element def = Element());
// Auto-resizes array if out of bounds
void setResize(IndexArray const& index, Element element);
// Copy the given array element for element into this array. The shape of
// this array must be at least as large in every dimension as the source
// array
void copy(MultiArray const& source);
void copy(MultiArray const& source, IndexArray const& sourceMin, IndexArray const& sourceMax, IndexArray const& targetMin);
// op will be called with IndexArray and Element parameters.
template <typename OpType>
void forEach(IndexArray const& min, SizeArray const& size, OpType&& op);
template <typename OpType>
void forEach(IndexArray const& min, SizeArray const& size, OpType&& op) const;
// Shortcut for calling forEach on the entire array
template <typename OpType>
void forEach(OpType&& op);
template <typename OpType>
void forEach(OpType&& op) const;
template <typename OStream>
void print(OStream& os) const;
// Api for more direct access to elements.
size_t count() const;
Element const& atIndex(size_t index) const;
Element& atIndex(size_t index);
Element const* data() const;
Element* data();
private:
size_t storageIndex(IndexArray const& index) const;
template <typename OStream>
void subPrint(OStream& os, IndexArray index, size_t dim) const;
template <typename OpType>
void subForEach(IndexArray const& min, SizeArray const& size, OpType&& op, IndexArray& index, size_t offset, size_t dim) const;
template <typename OpType>
void subForEach(IndexArray const& min, SizeArray const& size, OpType&& op, IndexArray& index, size_t offset, size_t dim);
void subCopy(MultiArray const& source, IndexArray const& sourceMin, IndexArray const& sourceMax,
IndexArray const& targetMin, IndexArray& sourceIndex, IndexArray& targetIndex, size_t dim);
Storage m_data;
SizeArray m_shape;
};
typedef MultiArray<int, 2> MultiArray2I;
typedef MultiArray<size_t, 2> MultiArray2S;
typedef MultiArray<unsigned, 2> MultiArray2U;
typedef MultiArray<float, 2> MultiArray2F;
typedef MultiArray<double, 2> MultiArray2D;
typedef MultiArray<int, 3> MultiArray3I;
typedef MultiArray<size_t, 3> MultiArray3S;
typedef MultiArray<unsigned, 3> MultiArray3U;
typedef MultiArray<float, 3> MultiArray3F;
typedef MultiArray<double, 3> MultiArray3D;
typedef MultiArray<int, 4> MultiArray4I;
typedef MultiArray<size_t, 4> MultiArray4S;
typedef MultiArray<unsigned, 4> MultiArray4U;
typedef MultiArray<float, 4> MultiArray4F;
typedef MultiArray<double, 4> MultiArray4D;
template <typename Element, size_t Rank>
std::ostream& operator<<(std::ostream& os, MultiArray<Element, Rank> const& array);
template <typename Element, size_t Rank>
MultiArray<Element, Rank>::MultiArray() {
m_shape = SizeArray::filled(0);
}
template <typename Element, size_t Rank>
MultiArray<Element, Rank>::MultiArray(SizeArray const& shape) {
setSize(shape);
}
template <typename Element, size_t Rank>
MultiArray<Element, Rank>::MultiArray(SizeArray const& shape, Element const& c) {
setSize(shape, c);
}
template <typename Element, size_t Rank>
template <typename... T>
MultiArray<Element, Rank>::MultiArray(size_t i, T... rest) {
setSize(SizeArray{i, rest...});
}
template <typename Element, size_t Rank>
typename MultiArray<Element, Rank>::SizeArray const& MultiArray<Element, Rank>::size() const {
return m_shape;
}
template <typename Element, size_t Rank>
size_t MultiArray<Element, Rank>::size(size_t dimension) const {
return m_shape[dimension];
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::clear() {
setSize(SizeArray::filled(0));
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::resize(SizeArray const& shape) {
if (m_data.empty()) {
setSize(shape);
return;
}
bool equal = true;
for (size_t i = 0; i < Rank; ++i)
equal = equal && (m_shape[i] == shape[i]);
if (equal)
return;
MultiArray newArray(shape);
newArray.copy(*this);
std::swap(*this, newArray);
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::resize(SizeArray const& shape, Element const& c) {
if (m_data.empty()) {
setSize(shape, c);
return;
}
bool equal = true;
for (size_t i = 0; i < Rank; ++i)
equal = equal && (m_shape[i] == shape[i]);
if (equal)
return;
MultiArray newArray(shape, c);
newArray.copy(*this);
*this = std::move(newArray);
}
template <typename Element, size_t Rank>
template <typename... T>
void MultiArray<Element, Rank>::resize(size_t i, T... rest) {
resize(SizeArray{i, rest...});
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::fill(Element const& element) {
std::fill(m_data.begin(), m_data.end(), element);
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::setSize(SizeArray const& shape) {
size_t storageSize = 1;
for (size_t i = 0; i < Rank; ++i) {
m_shape[i] = shape[i];
storageSize *= shape[i];
}
m_data.resize(storageSize);
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::setSize(SizeArray const& shape, Element const& c) {
size_t storageSize = 1;
for (size_t i = 0; i < Rank; ++i) {
m_shape[i] = shape[i];
storageSize *= shape[i];
}
m_data.resize(storageSize, c);
}
template <typename Element, size_t Rank>
template <typename... T>
void MultiArray<Element, Rank>::setSize(size_t i, T... rest) {
setSize({i, rest...});
}
template <typename Element, size_t Rank>
Element& MultiArray<Element, Rank>::operator()(IndexArray const& index) {
return m_data[storageIndex(index)];
}
template <typename Element, size_t Rank>
Element const& MultiArray<Element, Rank>::operator()(IndexArray const& index) const {
return m_data[storageIndex(index)];
}
template <typename Element, size_t Rank>
template <typename... T>
Element& MultiArray<Element, Rank>::operator()(size_t i1, T... rest) {
return m_data[storageIndex(IndexArray(i1, rest...))];
}
template <typename Element, size_t Rank>
template <typename... T>
Element const& MultiArray<Element, Rank>::operator()(size_t i1, T... rest) const {
return m_data[storageIndex(IndexArray(i1, rest...))];
}
template <typename Element, size_t Rank>
Element const& MultiArray<Element, Rank>::at(IndexArray const& index) const {
for (size_t i = Rank; i != 0; --i) {
if (index[i - 1] >= m_shape[i - 1])
2023-06-27 10:23:44 +00:00
throw MultiArrayException(strf("Out of bounds on MultiArray::at({})", index));
2023-06-20 04:33:09 +00:00
}
return m_data[storageIndex(index)];
}
template <typename Element, size_t Rank>
Element& MultiArray<Element, Rank>::at(IndexArray const& index) {
for (size_t i = Rank; i != 0; --i) {
if (index[i - 1] >= m_shape[i - 1])
2023-06-27 10:23:44 +00:00
throw MultiArrayException(strf("Out of bounds on MultiArray::at({})", index));
2023-06-20 04:33:09 +00:00
}
return m_data[storageIndex(index)];
}
template <typename Element, size_t Rank>
template <typename... T>
Element& MultiArray<Element, Rank>::at(size_t i1, T... rest) {
return at(IndexArray(i1, rest...));
}
template <typename Element, size_t Rank>
template <typename... T>
Element const& MultiArray<Element, Rank>::at(size_t i1, T... rest) const {
return at(IndexArray(i1, rest...));
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::set(IndexArray const& index, Element element) {
for (size_t i = Rank; i != 0; --i) {
if (index[i - 1] >= m_shape[i - 1])
2023-06-27 10:23:44 +00:00
throw MultiArrayException(strf("Out of bounds on MultiArray::set({})", index));
2023-06-20 04:33:09 +00:00
}
m_data[storageIndex(index)] = std::move(element);
2023-06-20 04:33:09 +00:00
}
template <typename Element, size_t Rank>
Element MultiArray<Element, Rank>::get(IndexArray const& index, Element def) {
for (size_t i = Rank; i != 0; --i) {
if (index[i - 1] >= m_shape[i - 1])
return std::move(def);
2023-06-20 04:33:09 +00:00
}
return m_data[storageIndex(index)];
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::setResize(IndexArray const& index, Element element) {
SizeArray newShape;
for (size_t i = 0; i < Rank; ++i)
newShape[i] = std::max(m_shape[i], index[i] + 1);
resize(newShape);
m_data[storageIndex(index)] = std::move(element);
2023-06-20 04:33:09 +00:00
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::copy(MultiArray const& source) {
IndexArray max;
for (size_t i = 0; i < Rank; ++i)
max[i] = std::min(size(i), source.size(i));
copy(source, IndexArray::filled(0), max, IndexArray::filled(0));
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::copy(MultiArray const& source, IndexArray const& sourceMin, IndexArray const& sourceMax, IndexArray const& targetMin) {
IndexArray sourceIndex;
IndexArray targetIndex;
subCopy(source, sourceMin, sourceMax, targetMin, sourceIndex, targetIndex, 0);
}
template <typename Element, size_t Rank>
template <typename OpType>
void MultiArray<Element, Rank>::forEach(IndexArray const& min, SizeArray const& size, OpType&& op) {
IndexArray index;
subForEach(min, size, std::forward<OpType>(op), index, 0, 0);
2023-06-20 04:33:09 +00:00
}
template <typename Element, size_t Rank>
template <typename OpType>
void MultiArray<Element, Rank>::forEach(IndexArray const& min, SizeArray const& size, OpType&& op) const {
IndexArray index;
subForEach(min, size, std::forward<OpType>(op), index, 0, 0);
2023-06-20 04:33:09 +00:00
}
template <typename Element, size_t Rank>
template <typename OpType>
void MultiArray<Element, Rank>::forEach(OpType&& op) {
forEach(IndexArray::filled(0), size(), std::forward<OpType>(op));
2023-06-20 04:33:09 +00:00
}
template <typename Element, size_t Rank>
template <typename OpType>
void MultiArray<Element, Rank>::forEach(OpType&& op) const {
forEach(IndexArray::filled(0), size(), std::forward<OpType>(op));
2023-06-20 04:33:09 +00:00
}
template <typename Element, size_t Rank>
template <typename OStream>
void MultiArray<Element, Rank>::print(OStream& os) const {
subPrint(os, IndexArray(), 0);
}
template <typename Element, size_t Rank>
size_t MultiArray<Element, Rank>::count() const {
return m_data.size();
}
template <typename Element, size_t Rank>
Element const& MultiArray<Element, Rank>::atIndex(size_t index) const {
return m_data[index];
}
template <typename Element, size_t Rank>
Element& MultiArray<Element, Rank>::atIndex(size_t index) {
return m_data[index];
}
template <typename Element, size_t Rank>
Element const* MultiArray<Element, Rank>::data() const {
return m_data.ptr();
}
template <typename Element, size_t Rank>
Element* MultiArray<Element, Rank>::data() {
return m_data.ptr();
}
template <typename Element, size_t Rank>
size_t MultiArray<Element, Rank>::storageIndex(IndexArray const& index) const {
size_t loc = index[0];
starAssert(index[0] < m_shape[0]);
for (size_t i = 1; i < Rank; ++i) {
loc = loc * m_shape[i] + index[i];
starAssert(index[i] < m_shape[i]);
}
return loc;
}
template <typename Element, size_t Rank>
template <typename OStream>
void MultiArray<Element, Rank>::subPrint(OStream& os, IndexArray index, size_t dim) const {
if (dim == Rank - 1) {
for (size_t i = 0; i < m_shape[dim]; ++i) {
index[dim] = i;
os << m_data[storageIndex(index)] << ' ';
}
os << std::endl;
} else {
for (size_t i = 0; i < m_shape[dim]; ++i) {
index[dim] = i;
subPrint(os, index, dim + 1);
}
os << std::endl;
}
}
template <typename Element, size_t Rank>
template <typename OpType>
void MultiArray<Element, Rank>::subForEach(IndexArray const& min, SizeArray const& size, OpType&& op, IndexArray& index, size_t offset, size_t dim) {
size_t minIndex = min[dim];
size_t maxIndex = minIndex + size[dim];
for (size_t i = minIndex; i < maxIndex; ++i) {
index[dim] = i;
if (dim == Rank - 1)
op(index, m_data[offset + i]);
else
subForEach(min, size, std::forward<OpType>(op), index, (offset + i) * m_shape[dim + 1], dim + 1);
2023-06-20 04:33:09 +00:00
}
}
template <typename Element, size_t Rank>
template <typename OpType>
void MultiArray<Element, Rank>::subForEach(IndexArray const& min, SizeArray const& size, OpType&& op, IndexArray& index, size_t offset, size_t dim) const {
size_t minIndex = min[dim];
size_t maxIndex = minIndex + size[dim];
for (size_t i = minIndex; i < maxIndex; ++i) {
index[dim] = i;
if (dim == Rank - 1)
op(index, m_data[offset + i]);
else
subForEach(min, size, std::forward<OpType>(op), index, (offset + i) * m_shape[dim + 1], dim + 1);
2023-06-20 04:33:09 +00:00
}
}
template <typename Element, size_t Rank>
void MultiArray<Element, Rank>::subCopy(MultiArray const& source, IndexArray const& sourceMin, IndexArray const& sourceMax,
IndexArray const& targetMin, IndexArray& sourceIndex, IndexArray& targetIndex, size_t dim) {
size_t w = sourceMax[dim] - sourceMin[dim];
if (dim < Rank - 1) {
for (size_t i = 0; i < w; ++i) {
sourceIndex[dim] = i + sourceMin[dim];
targetIndex[dim] = i + targetMin[dim];
subCopy(source, sourceMin, sourceMax, targetMin, sourceIndex, targetIndex, dim + 1);
}
} else {
sourceIndex[dim] = sourceMin[dim];
targetIndex[dim] = targetMin[dim];
size_t sourceStorageStart = source.storageIndex(sourceIndex);
size_t targetStorageStart = storageIndex(targetIndex);
for (size_t i = 0; i < w; ++i)
m_data[targetStorageStart + i] = source.m_data[sourceStorageStart + i];
}
}
template <typename Element, size_t Rank>
std::ostream& operator<<(std::ostream& os, MultiArray<Element, Rank> const& array) {
array.print(os);
return os;
}
}
template <typename Element, size_t Rank>
struct fmt::formatter<Star::MultiArray<Element, Rank>> : ostream_formatter {};
2023-06-20 04:33:09 +00:00
#endif