osb/source/core/StarVector.hpp

922 lines
23 KiB
C++
Raw Normal View History

#pragma once
2023-06-20 14:33:09 +10:00
#include "StarArray.hpp"
#include "StarMathCommon.hpp"
#include "StarAlgorithm.hpp"
#include "StarHash.hpp"
namespace Star {
template <typename T, size_t N>
class Vector : public Array<T, N> {
public:
typedef Array<T, N> Base;
template <size_t P, typename T2 = void>
using Enable2D = typename std::enable_if<P == 2 && N == P, T2>::type;
template <size_t P, typename T2 = void>
using Enable3D = typename std::enable_if<P == 3 && N == P, T2>::type;
template <size_t P, typename T2 = void>
using Enable4D = typename std::enable_if<P == 4 && N == P, T2>::type;
template <size_t P, typename T2 = void>
using Enable2DOrHigher = typename std::enable_if<P >= 2 && N == P, T2>::type;
template <size_t P, typename T2 = void>
using Enable3DOrHigher = typename std::enable_if<P >= 3 && N == P, T2>::type;
template <size_t P, typename T2 = void>
using Enable4DOrHigher = typename std::enable_if<P >= 4 && N == P, T2>::type;
static Vector filled(T const& t);
template <typename T2>
static Vector floor(Vector<T2, N> const& v);
template <typename T2>
static Vector ceil(Vector<T2, N> const& v);
template <typename T2>
static Vector round(Vector<T2, N> const& v);
template <typename Iterator>
static Vector copyFrom(Iterator p);
// Is zero-initialized (from Array)
Vector();
explicit Vector(T const& e1);
template <typename... TN>
Vector(T const& e1, TN const&... rest);
template <typename T2>
explicit Vector(Array<T2, N> const& v);
template <typename T2, typename T3>
Vector(Array<T2, N - 1> const& u, T3 const& v);
template <size_t N2>
Vector<T, N2> toSize() const;
Vector<T, 2> vec2() const;
Vector<T, 3> vec3() const;
Vector<T, 4> vec4() const;
Vector piecewiseMultiply(Vector const& v2) const;
Vector piecewiseDivide(Vector const& v2) const;
Vector piecewiseMin(Vector const& v2) const;
Vector piecewiseMax(Vector const& v2) const;
Vector piecewiseClamp(Vector const& min, Vector const& max) const;
T min() const;
T max() const;
T sum() const;
T product() const;
template <typename Function>
Vector combine(Vector const& v, Function f) const;
// Outputs angles in the range [0, pi]
T angleBetween(Vector const& v) const;
// Angle between two normalized vectors.
T angleBetweenNormalized(Vector const& v) const;
T magnitudeSquared() const;
T magnitude() const;
void normalize();
Vector normalized() const;
Vector projectOnto(Vector const& v) const;
Vector projectOntoNormalized(Vector const& v) const;
void negate();
// Reverses order of components of vector
void reverse();
Vector abs() const;
Vector floor() const;
Vector ceil() const;
Vector round() const;
void fill(T const& v);
void clamp(T const& min, T const& max);
template <typename Function>
void transform(Function&& function);
template <typename Function>
Vector<decltype(std::declval<Function>()(std::declval<T>())), N> transformed(Function&& function) const;
Vector operator-() const;
Vector operator+(Vector const& v) const;
Vector operator-(Vector const& v) const;
T operator*(Vector const& v) const;
Vector operator*(T s) const;
Vector operator/(T s) const;
Vector& operator+=(Vector const& v);
Vector& operator-=(Vector const& v);
Vector& operator*=(T s);
Vector& operator/=(T s);
// Vector2
// Return vector rotated to given angle
template <size_t P = N>
static Enable2D<P, Vector> withAngle(T angle, T magnitude = 1);
template <size_t P = N>
static Enable2D<P, T> angleBetween2(Vector const& u, Vector const& v);
template <size_t P = N>
static Enable2D<P, T> angleFormedBy2(Vector const& a, Vector const& b, Vector const& c);
template <size_t P = N>
static Enable2D<P, T> angleFormedBy2(Vector const& a, Vector const& b, Vector const& c, std::function<Vector(Vector, Vector)> const& diff);
template <size_t P = N>
Enable2D<P, Vector> rotate(T angle) const;
// Faster than rotate(Constants::pi/2).
template <size_t P = N>
Enable2D<P, Vector> rot90() const;
// Angle of vector on 2d plane, in the range [-pi, pi]
template <size_t P = N>
Enable2D<P, T> angle() const;
// Returns polar coordinates of this cartesian vector
template <size_t P = N>
Enable2D<P, Vector> toPolar() const;
// Returns cartesian coordinates of this polar vector
template <size_t P = N>
Enable2D<P, Vector> toCartesian() const;
template <size_t P = N>
Enable2DOrHigher<P, T> const& x() const;
template <size_t P = N>
Enable2DOrHigher<P, T> const& y() const;
template <size_t P = N>
Enable2DOrHigher<P> setX(T const& t);
template <size_t P = N>
Enable2DOrHigher<P> setY(T const& t);
// Vector3
template <size_t P = N>
static Enable3D<P, Vector> fromAngles(T psi, T theta);
template <size_t P = N>
static Enable3D<P, Vector> fromAnglesEnu(T psi, T theta);
template <size_t P = N>
static Enable3D<P, T> tripleScalarProduct(Vector const& u, Vector const& v, Vector const& w);
template <size_t P = N>
static Enable3D<P, T> angle(Vector const& v1, Vector const& v2);
template <size_t P = N>
Enable3D<P, T> psi() const;
template <size_t P = N>
Enable3D<P, T> theta() const;
template <size_t P = N>
Enable3D<P, Vector<T, 2>> eulers() const;
template <size_t P = N>
Enable3D<P, T> psiEnu() const;
template <size_t P = N>
Enable3D<P, T> thetaEnu() const;
template <size_t P = N>
Enable3D<P, Vector> nedToEnu() const;
template <size_t P = N>
Enable3D<P, Vector> enuToNed() const;
template <size_t P = N>
Enable3DOrHigher<P, T> const& z() const;
template <size_t P = N>
Enable3DOrHigher<P> setZ(T const& t);
// Vector4
template <size_t P = N>
Enable4DOrHigher<P, T> const& w() const;
template <size_t P = N>
Enable4DOrHigher<P> setW(T const& t);
using Base::size;
using Base::empty;
};
typedef Vector<int, 2> Vec2I;
typedef Vector<unsigned, 2> Vec2U;
typedef Vector<float, 2> Vec2F;
typedef Vector<double, 2> Vec2D;
typedef Vector<uint8_t, 2> Vec2B;
typedef Vector<size_t, 2> Vec2S;
typedef Vector<int, 3> Vec3I;
typedef Vector<unsigned, 3> Vec3U;
typedef Vector<float, 3> Vec3F;
typedef Vector<double, 3> Vec3D;
typedef Vector<uint8_t, 3> Vec3B;
typedef Vector<size_t, 3> Vec3S;
typedef Vector<int, 4> Vec4I;
typedef Vector<unsigned, 4> Vec4U;
typedef Vector<float, 4> Vec4F;
typedef Vector<double, 4> Vec4D;
typedef Vector<uint8_t, 4> Vec4B;
typedef Vector<size_t, 4> Vec4S;
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& os, Vector<T, N> const& v);
template <typename T, size_t N>
Vector<T, N> operator*(T s, Vector<T, N> v);
template <typename T, size_t N>
Vector<T, N> vnorm(Vector<T, N> v);
template <typename T, size_t N>
T vmag(Vector<T, N> const& v);
template <typename T, size_t N>
T vmagSquared(Vector<T, N> const& v);
template <typename T, size_t N>
Vector<T, N> vmin(Vector<T, N> const& a, Vector<T, N> const& b);
template <typename T, size_t N>
Vector<T, N> vmax(Vector<T, N> const& a, Vector<T, N> const& b);
template <typename T, size_t N>
Vector<T, N> vclamp(Vector<T, N> const& a, Vector<T, N> const& min, Vector<T, N> const& max);
template <typename VectorType>
VectorType vmult(VectorType const& a, VectorType const& b);
template <typename VectorType>
VectorType vdiv(VectorType const& a, VectorType const& b);
// Returns the cross product
template <typename T>
Vector<T, 3> operator^(Vector<T, 3> v1, Vector<T, 3> v2);
// Returns the cross product / determinant
template <typename T>
T operator^(Vector<T, 2> const& v1, Vector<T, 2> const& v2);
template <typename T, size_t N>
struct hash<Vector<T, N>> : hash<Array<T, N>> {};
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::filled(T const& t) {
Vector v;
for (size_t i = 0; i < N; ++i)
v[i] = t;
return v;
}
template <typename T, size_t N>
template <typename T2>
Vector<T, N> Vector<T, N>::floor(Vector<T2, N> const& v) {
Vector vec;
for (size_t i = 0; i < N; ++i)
vec[i] = Star::floor(v[i]);
return vec;
}
template <typename T, size_t N>
template <typename T2>
Vector<T, N> Vector<T, N>::ceil(Vector<T2, N> const& v) {
Vector vec;
for (size_t i = 0; i < N; ++i)
vec[i] = Star::ceil(v[i]);
return vec;
}
template <typename T, size_t N>
template <typename T2>
Vector<T, N> Vector<T, N>::round(Vector<T2, N> const& v) {
Vector vec;
for (size_t i = 0; i < N; ++i)
vec[i] = Star::round(v[i]);
return vec;
}
template <typename T, size_t N>
template <typename Iterator>
Vector<T, N> Vector<T, N>::copyFrom(Iterator p) {
Vector v;
for (size_t i = 0; i < N; ++i)
v[i] = *(p++);
return v;
}
template <typename T, size_t N>
Vector<T, N>::Vector() {}
template <typename T, size_t N>
Vector<T, N>::Vector(T const& e1)
: Base(e1) {}
template <typename T, size_t N>
template <typename... TN>
Vector<T, N>::Vector(T const& e1, TN const&... rest)
: Base(e1, rest...) {}
template <typename T, size_t N>
template <typename T2>
Vector<T, N>::Vector(Array<T2, N> const& v)
: Base(v) {}
template <typename T, size_t N>
template <typename T2, typename T3>
Vector<T, N>::Vector(Array<T2, N - 1> const& u, T3 const& v) {
for (size_t i = 0; i < N - 1; ++i) {
Base::operator[](i) = u[i];
}
Base::operator[](N - 1) = v;
}
template <typename T, size_t N>
template <size_t N2>
Vector<T, N2> Vector<T, N>::toSize() const {
Vector<T, N2> r;
size_t ns = Star::min(N2, N);
for (size_t i = 0; i < ns; ++i)
r[i] = (*this)[i];
return r;
}
template <typename T, size_t N>
Vector<T, 2> Vector<T, N>::vec2() const {
return toSize<2>();
}
template <typename T, size_t N>
Vector<T, 3> Vector<T, N>::vec3() const {
return toSize<3>();
}
template <typename T, size_t N>
Vector<T, 4> Vector<T, N>::vec4() const {
return toSize<4>();
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::piecewiseMultiply(Vector const& v2) const {
return combine(v2, std::multiplies<T>());
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::piecewiseDivide(Vector const& v2) const {
return combine(v2, std::divides<T>());
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::piecewiseMin(Vector const& v2) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = Star::min((*this)[i], v2[i]);
return r;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::piecewiseMax(Vector const& v2) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = Star::max((*this)[i], v2[i]);
return r;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::piecewiseClamp(Vector const& min, Vector const& max) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = Star::max(Star::min((*this)[i], max[i]), min[i]);
return r;
}
template <typename T, size_t N>
T Vector<T, N>::min() const {
T s = (*this)[0];
for (size_t i = 1; i < N; ++i)
s = Star::min(s, (*this)[i]);
return s;
}
template <typename T, size_t N>
T Vector<T, N>::max() const {
T s = (*this)[0];
for (size_t i = 1; i < N; ++i)
s = Star::max(s, (*this)[i]);
return s;
}
template <typename T, size_t N>
T Vector<T, N>::sum() const {
T s = (*this)[0];
for (size_t i = 1; i < N; ++i)
s += (*this)[i];
return s;
}
template <typename T, size_t N>
T Vector<T, N>::product() const {
T p = (*this)[0];
for (size_t i = 1; i < N; ++i)
p *= (*this)[i];
return p;
}
template <typename T, size_t N>
template <typename Function>
Vector<T, N> Vector<T, N>::combine(Vector const& v, Function f) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = f((*this)[i], v[i]);
return r;
}
template <typename T, size_t N>
T Vector<T, N>::angleBetween(Vector const& v) const {
return acos(this->normalized() * v.normalized());
}
template <typename T, size_t N>
T Vector<T, N>::angleBetweenNormalized(Vector const& v) const {
return acos(*this * v);
}
template <typename T, size_t N>
T Vector<T, N>::magnitudeSquared() const {
T m = 0;
for (size_t i = 0; i < N; ++i)
m += square((*this)[i]);
return m;
}
template <typename T, size_t N>
T Vector<T, N>::magnitude() const {
return sqrt(magnitudeSquared());
}
template <typename T, size_t N>
void Vector<T, N>::normalize() {
T m = magnitude();
if (m != 0)
*this = (*this) / m;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::normalized() const {
T m = magnitude();
if (m != 0)
return (*this) / m;
else
return *this;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::projectOnto(Vector const& v) const {
T m = v.magnitudeSquared();
if (m != 0)
return projectOntoNormalized(v) / m;
else
return Vector();
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::projectOntoNormalized(Vector const& v) const {
return ((*this) * v) * v;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::operator-() const {
auto v = *this;
v.negate();
return v;
}
template <typename T, size_t N>
void Vector<T, N>::negate() {
for (size_t i = 0; i < N; ++i)
(*this)[i] = -(*this)[i];
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::abs() const {
Vector v;
for (size_t i = 0; i < N; ++i)
v[i] = fabs((*this)[i]);
return v;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::floor() const {
return floor(*this);
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::ceil() const {
return ceil(*this);
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::round() const {
return round(*this);
}
template <typename T, size_t N>
void Vector<T, N>::reverse() {
std::reverse(Base::begin(), Base::end());
}
template <typename T, size_t N>
void Vector<T, N>::fill(T const& v) {
Base::fill(v);
}
template <typename T, size_t N>
void Vector<T, N>::clamp(T const& min, T const& max) {
for (size_t i = 0; i < N; ++i)
(*this)[i] = Star::max(min, Star::min(max, (*this)[i]));
}
template <typename T, size_t N>
template <typename Function>
void Vector<T, N>::transform(Function&& function) {
for (auto& e : *this)
e = function(e);
}
template <typename T, size_t N>
template <typename Function>
Vector<decltype(std::declval<Function>()(std::declval<T>())), N> Vector<T, N>::transformed(Function&& function) const {
return Star::transform<Vector<decltype(std::declval<Function>()(std::declval<T>())), N>>(*this, function);
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::operator+(Vector const& v) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = (*this)[i] + v[i];
return r;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::operator-(Vector const& v) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = (*this)[i] - v[i];
return r;
}
template <typename T, size_t N>
T Vector<T, N>::operator*(Vector const& v) const {
T sum = 0;
for (size_t i = 0; i < N; ++i)
sum += (*this)[i] * v[i];
return sum;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::operator*(T s) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = (*this)[i] * s;
return r;
}
template <typename T, size_t N>
Vector<T, N> Vector<T, N>::operator/(T s) const {
Vector r;
for (size_t i = 0; i < N; ++i)
r[i] = (*this)[i] / s;
return r;
}
template <typename T, size_t N>
Vector<T, N>& Vector<T, N>::operator+=(Vector const& v) {
return (*this = *this + v);
}
template <typename T, size_t N>
Vector<T, N>& Vector<T, N>::operator-=(Vector const& v) {
return (*this = *this - v);
}
template <typename T, size_t N>
Vector<T, N>& Vector<T, N>::operator*=(T s) {
return (*this = *this * s);
}
template <typename T, size_t N>
Vector<T, N>& Vector<T, N>::operator/=(T s) {
return (*this = *this / s);
}
// Vector2
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::withAngle(T angle, T magnitude) -> Enable2D<P, Vector<T, N>> {
return Vector(std::cos(angle) * magnitude, std::sin(angle) * magnitude);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::angleBetween2(Vector const& v1, Vector const& v2) -> Enable2D<P, T> {
// TODO: Inefficient
return v2.angle() - v1.angle();
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::angleFormedBy2(Vector const& a, Vector const& b, Vector const& c) -> Enable2D<P, T> {
return angleBetween2(b - a, b - c);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::angleFormedBy2(
Vector const& a, Vector const& b, Vector const& c, std::function<Vector(Vector, Vector)> const& diff)
-> Enable2D<P, T> {
return angleBetween2(diff(b, a), diff(b, c));
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::angle() const -> Enable2D<P, T> {
return atan2(Base::operator[](1), Base::operator[](0));
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::rotate(T a) const -> Enable2D<P, Vector<T, N>> {
// TODO: Need a Matrix2
T cosa = std::cos(a);
T sina = std::sin(a);
return Vector(
Base::operator[](0) * cosa - Base::operator[](1) * sina, Base::operator[](0) * sina + Base::operator[](1) * cosa);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::rot90() const -> Enable2D<P, Vector<T, N>> {
return Vector(-y(), x());
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::toPolar() const -> Enable2D<P, Vector<T, N>> {
return Vector(angle(), Base::magnitude());
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::toCartesian() const -> Enable2D<P, Vector<T, N>> {
return vec2d(sin((*this)[0]) * (*this)[1], cos((*this)[0]) * (*this)[1]);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::x() const -> Enable2DOrHigher<P, T> const & {
return Base::operator[](0);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::y() const -> Enable2DOrHigher<P, T> const & {
return Base::operator[](1);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::setX(T const& t) -> Enable2DOrHigher<P> {
Base::operator[](0) = t;
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::setY(T const& t) -> Enable2DOrHigher<P> {
Base::operator[](1) = t;
}
// Vector3
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::tripleScalarProduct(Vector const& a, Vector const& b, Vector const& c) -> Enable3D<P, T> {
return a * (b ^ c);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::theta() const -> Enable3D<P, T> {
Vector<T, N> vn = norm(*this);
T tmp = fabs(vn.z());
if (tmp > 0.99999) {
return tmp > 0.0 ? T(-Constants::pi / 2) : T(Constants::pi / 2);
} else {
return asin(-vn.z());
}
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::psi() const -> Enable3D<P, T> {
Vector<T, N> vn = norm(*this);
T tmp = T(fabs(vn.z()));
if (tmp > 0.99999) {
return 0.0;
} else {
return T(atan2(vn.y(), vn.x()));
}
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::thetaEnu() const -> Enable3D<P, T> {
Vector<T, N> vn = norm(*this);
T tmp = fabs(vn.z());
if (tmp > 0.99999) {
return tmp > 0.0 ? -Constants::pi / 2 : Constants::pi / 2;
} else {
return asin(vn.z());
}
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::psiEnu() const -> Enable3D<P, T> {
Vector<T, N> vn = norm(*this);
T tmp = fabs(vn.z());
if (tmp > 0.99999) {
return 0.0;
} else {
return atan2(vn.x(), vn.y());
}
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::eulers() const -> Enable3D<P, Vector<T, 2>> {
T psi, theta;
Vector<T, N> vn = norm(*this);
T tmp = fabs(vn.z());
if (tmp > 0.99999) {
psi = 0.0;
theta = tmp > 0.0 ? -Constants::pi / 2 : Constants::pi / 2;
} else {
psi = atan2(vn.y(), vn.x());
theta = asin(-vn.z());
}
return Vector<T, 2>(psi, theta);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::fromAngles(T psi, T theta) -> Enable3D<P, Vector<T, N>> {
Vec3F nv;
T cosTheta = T(cos(theta));
nv.x() = T(cos(psi));
nv.y() = T(sin(psi));
nv.x() *= cosTheta;
nv.y() *= cosTheta;
nv.z() = T(-sin(theta));
return nv;
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::fromAnglesEnu(T psi, T theta) -> Enable3D<P, Vector<T, N>> {
Vector nv = fromAngles(psi, theta);
return Vector(nv.y(), nv.x(), -nv.z());
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::angle(Vector const& v1, Vector const& v2) -> Enable3D<P, T> {
return acos(Star::min(norm(v1) * norm(v2), 1.0));
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::nedToEnu() const -> Enable3D<P, Vector<T, N>> {
return Vector(y(), x(), -z());
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::enuToNed() const -> Enable3D<P, Vector<T, N>> {
return Vector(y(), x(), -z());
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::z() const -> Enable3DOrHigher<P, T> const & {
return Base::operator[](2);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::setZ(T const& t) -> Enable3DOrHigher<P> {
Base::operator[](2) = t;
}
// Vector4
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::w() const -> Enable4DOrHigher<P, T> const & {
return Base::operator[](3);
}
template <typename T, size_t N>
template <size_t P>
auto Vector<T, N>::setW(T const& t) -> Enable4DOrHigher<P> {
Base::operator[](3) = t;
}
// Free Functions
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& os, Vector<T, N> const& v) {
os << '(';
for (size_t i = 0; i < N; ++i) {
os << v[i];
if (i != N - 1)
os << ", ";
}
os << ')';
return os;
}
template <typename T, size_t N>
Vector<T, N> operator*(T s, Vector<T, N> v) {
return v * s;
}
template <typename T, size_t N>
Vector<T, N> vnorm(Vector<T, N> v) {
return v.normalized();
}
template <typename T, size_t N>
T vmag(Vector<T, N> const& v) {
return v.magnitude();
}
template <typename T, size_t N>
T vmagSquared(Vector<T, N> const& v) {
return v.magnitudeSquared();
}
template <typename T, size_t N>
Vector<T, N> vmin(Vector<T, N> const& a, Vector<T, N> const& b) {
return a.piecewiseMin(b);
}
template <typename T, size_t N>
Vector<T, N> vmax(Vector<T, N> const& a, Vector<T, N> const& b) {
return a.piecewiseMax(b);
}
template <typename T, size_t N>
Vector<T, N> vclamp(Vector<T, N> const& a, Vector<T, N> const& min, Vector<T, N> const& max) {
return a.piecewiseClamp(min, max);
}
template <typename VectorType>
VectorType vmult(VectorType const& a, VectorType const& b) {
return a.piecewiseMultiply(b);
}
template <typename VectorType>
VectorType vdiv(VectorType const& a, VectorType const& b) {
return a.piecewiseDivide(b);
}
template <typename T>
Vector<T, 3> operator^(Vector<T, 3> v1, Vector<T, 3> v2) {
return Vector<T, 3>(v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0]);
}
template <typename T>
T operator^(Vector<T, 2> const& v1, Vector<T, 2> const& v2) {
return v1[0] * v2[1] - v1[1] * v2[0];
}
}