osb/source/core/StarThread.hpp

423 lines
11 KiB
C++
Raw Normal View History

#pragma once
2023-06-20 14:33:09 +10:00
#include "StarException.hpp"
#include "StarString.hpp"
namespace Star {
STAR_STRUCT(ThreadImpl);
STAR_STRUCT(ThreadFunctionImpl);
STAR_STRUCT(MutexImpl);
STAR_STRUCT(ConditionVariableImpl);
STAR_STRUCT(RecursiveMutexImpl);
template <typename Return>
class ThreadFunction;
class Thread {
public:
// Implementations of this method should sleep for at least the given amount
// of time, but may sleep for longer due to scheduling.
static void sleep(unsigned millis);
// Sleep a more precise amount of time, but uses more resources to do so.
// Should be less likely to sleep much longer than the given amount of time.
static void sleepPrecise(unsigned millis);
// Yield this thread, offering the opportunity to reschedule.
static void yield();
static unsigned numberOfProcessors();
template <typename Function, typename... Args>
static ThreadFunction<decltype(std::declval<Function>()(std::declval<Args>()...))> invoke(String const& name, Function&& f, Args&&... args);
Thread(String const& name);
Thread(Thread&&);
// Will not automatically join! ALL implementations of this class MUST call
// join() in their most derived constructors, or not rely on the destructor
// joining.
virtual ~Thread();
Thread& operator=(Thread&&);
// Start a thread that is currently in the joined state. Returns true if the
// thread was joined and is now started, false if the thread was not joined.
bool start();
// Wait for a thread to finish and re-join with the thread, on completion
// isJoined() will be false. Returns true if the thread was joinable, and is
// now joined, false if the thread was already joined.
bool join();
// Returns false when this thread been started without being joined. This is
// subtlely different than "!isRunning()", in that the thread could have
// completed its work, but a thread *must* be joined before being restarted.
bool isJoined() const;
// Returns false before start() has been called, true immediately after
// start() has been called, and false once the run() method returns.
bool isRunning() const;
String name();
protected:
virtual void run() = 0;
private:
unique_ptr<ThreadImpl> m_impl;
};
// Wraps a function call and calls in another thread, very nice lightweight
// one-shot alternative to deriving from Thread. Handles exceptions in a
// different way from Thread, instead of logging the exception, the exception
// is forwarded and re-thrown during the call to finish().
template <>
class ThreadFunction<void> {
public:
ThreadFunction();
ThreadFunction(ThreadFunction&&);
// Automatically starts the given function, ThreadFunction can also be
// constructed with Thread::invoke, which is a shorthand.
ThreadFunction(function<void()> function, String const& name);
// Automatically calls finish, though BEWARE that often times this is quite
// dangerous, and this is here mostly as a fallback. The natural destructor
// order for members of a class is often wrong, and if the function throws,
// since this destructor calls finish it will throw.
~ThreadFunction();
ThreadFunction& operator=(ThreadFunction&&);
// Waits on function finish if function is assigned and started, otherwise
// does nothing. If the function threw an exception, it will be re-thrown
// here (on the first call to finish() only).
void finish();
// Returns whether the ThreadFunction::finish method been called and the
// ThreadFunction has stopped. Also returns true when the ThreadFunction has
// been default constructed.
bool isFinished() const;
// Returns false if the thread function has stopped running, whether or not
// finish() has been called.
bool isRunning() const;
// Equivalent to !isFinished()
explicit operator bool() const;
String name();
private:
unique_ptr<ThreadFunctionImpl> m_impl;
};
template <typename Return>
class ThreadFunction {
public:
ThreadFunction();
ThreadFunction(ThreadFunction&&);
ThreadFunction(function<Return()> function, String const& name);
~ThreadFunction();
ThreadFunction& operator=(ThreadFunction&&);
// Finishes the thread, moving and returning the final value of the function.
// If the function threw an exception, finish() will rethrow that exception.
// May only be called once, otherwise will throw InvalidMaybeAccessException.
Return finish();
bool isFinished() const;
bool isRunning() const;
explicit operator bool() const;
String name();
private:
ThreadFunction<void> m_function;
shared_ptr<Maybe<Return>> m_return;
};
// *Non* recursive mutex lock, for use with ConditionVariable
class Mutex {
public:
Mutex();
Mutex(Mutex&&);
~Mutex();
Mutex& operator=(Mutex&&);
void lock();
// Attempt to acquire the mutex without blocking.
bool tryLock();
void unlock();
private:
friend struct ConditionVariableImpl;
unique_ptr<MutexImpl> m_impl;
};
class ConditionVariable {
public:
ConditionVariable();
ConditionVariable(ConditionVariable&&);
~ConditionVariable();
ConditionVariable& operator=(ConditionVariable&&);
// Atomically unlocks the mutex argument and waits on the condition. On
// acquiring the condition, atomically returns and re-locks the mutex. Must
// lock the mutex before calling. If millis is given, waits for a maximum of
// the given milliseconds only.
void wait(Mutex& mutex, Maybe<unsigned> millis = {});
// Wake one waiting thread. The calling thread for is allowed to either hold
// or not hold the mutex that the threads waiting on the condition are using,
// both will work and result in slightly different scheduling.
void signal();
// Wake all threads, policy for holding the mutex is the same for signal().
void broadcast();
private:
unique_ptr<ConditionVariableImpl> m_impl;
};
// Recursive mutex lock. lock() may be called many times freely by the same
// thread, but unlock() must be called an equal number of times to unlock it.
class RecursiveMutex {
public:
RecursiveMutex();
RecursiveMutex(RecursiveMutex&&);
~RecursiveMutex();
RecursiveMutex& operator=(RecursiveMutex&&);
void lock();
// Attempt to acquire the mutex without blocking.
bool tryLock();
void unlock();
private:
unique_ptr<RecursiveMutexImpl> m_impl;
};
// RAII for mutexes. Locking and unlocking are always safe, MLocker will never
// attempt to lock the held mutex more than once, or unlock more than once, and
// destruction will always unlock the mutex *iff* it is actually locked.
// (Locked here refers to one specific MLocker *itself* locking the mutex, not
// whether the mutex is locked *at all*, so it is sensible to use with
// RecursiveMutex)
template <typename MutexType>
class MLocker {
public:
// Pass false to lock to start unlocked
MLocker(MutexType& ref, bool lock = true);
~MLocker();
MLocker(MLocker const&) = delete;
MLocker& operator=(MLocker const&) = delete;
MutexType& mutex();
void unlock();
void lock();
bool tryLock();
private:
MutexType& m_mutex;
bool m_locked;
};
typedef MLocker<Mutex> MutexLocker;
typedef MLocker<RecursiveMutex> RecursiveMutexLocker;
class ReadersWriterMutex {
public:
ReadersWriterMutex();
void readLock();
bool tryReadLock();
void readUnlock();
void writeLock();
bool tryWriteLock();
void writeUnlock();
private:
Mutex m_mutex;
ConditionVariable m_readCond;
ConditionVariable m_writeCond;
unsigned m_readers;
unsigned m_writers;
unsigned m_readWaiters;
unsigned m_writeWaiters;
};
class ReadLocker {
public:
ReadLocker(ReadersWriterMutex& rwlock, bool startLocked = true);
~ReadLocker();
ReadLocker(ReadLocker const&) = delete;
ReadLocker& operator=(ReadLocker const&) = delete;
void unlock();
void lock();
bool tryLock();
private:
ReadersWriterMutex& m_lock;
bool m_locked;
};
class WriteLocker {
public:
WriteLocker(ReadersWriterMutex& rwlock, bool startLocked = true);
~WriteLocker();
WriteLocker(WriteLocker const&) = delete;
WriteLocker& operator=(WriteLocker const&) = delete;
void unlock();
void lock();
bool tryLock();
private:
ReadersWriterMutex& m_lock;
bool m_locked;
};
class SpinLock {
public:
SpinLock();
void lock();
bool tryLock();
void unlock();
private:
atomic_flag m_lock;
};
typedef MLocker<SpinLock> SpinLocker;
template <typename MutexType>
MLocker<MutexType>::MLocker(MutexType& ref, bool l)
: m_mutex(ref), m_locked(false) {
if (l)
lock();
}
template <typename MutexType>
MLocker<MutexType>::~MLocker() {
unlock();
}
template <typename MutexType>
MutexType& MLocker<MutexType>::mutex() {
return m_mutex;
}
template <typename MutexType>
void MLocker<MutexType>::unlock() {
if (m_locked) {
m_mutex.unlock();
m_locked = false;
}
}
template <typename MutexType>
void MLocker<MutexType>::lock() {
if (!m_locked) {
m_mutex.lock();
m_locked = true;
}
}
template <typename MutexType>
bool MLocker<MutexType>::tryLock() {
if (!m_locked) {
if (m_mutex.tryLock())
m_locked = true;
}
return m_locked;
}
template <typename Function, typename... Args>
ThreadFunction<decltype(std::declval<Function>()(std::declval<Args>()...))> Thread::invoke(String const& name, Function&& f, Args&&... args) {
return {bind(std::forward<Function>(f), std::forward<Args>(args)...), name};
2023-06-20 14:33:09 +10:00
}
template <typename Return>
ThreadFunction<Return>::ThreadFunction() {}
template <typename Return>
ThreadFunction<Return>::ThreadFunction(ThreadFunction&&) = default;
template <typename Return>
ThreadFunction<Return>::ThreadFunction(function<Return()> function, String const& name) {
m_return = make_shared<Maybe<Return>>();
m_function = ThreadFunction<void>([function = std::move(function), retValue = m_return]() {
2023-06-20 14:33:09 +10:00
*retValue = function();
}, name);
}
template <typename Return>
ThreadFunction<Return>::~ThreadFunction() {
m_function.finish();
}
template <typename Return>
ThreadFunction<Return>& ThreadFunction<Return>::operator=(ThreadFunction&&) = default;
template <typename Return>
Return ThreadFunction<Return>::finish() {
m_function.finish();
return m_return->take();
}
template <typename Return>
bool ThreadFunction<Return>::isFinished() const {
return m_function.isFinished();
}
template <typename Return>
bool ThreadFunction<Return>::isRunning() const {
return m_function.isRunning();
}
template <typename Return>
ThreadFunction<Return>::operator bool() const {
return !isFinished();
}
template <typename Return>
String ThreadFunction<Return>::name() {
return m_function.name();
}
inline SpinLock::SpinLock() {
m_lock.clear();
}
inline void SpinLock::lock() {
while (m_lock.test_and_set(std::memory_order_acquire))
;
}
inline void SpinLock::unlock() {
m_lock.clear(std::memory_order_release);
}
inline bool SpinLock::tryLock() {
return !m_lock.test_and_set(std::memory_order_acquire);
}
}