osb/source/core/StarPerlin.hpp

719 lines
16 KiB
C++
Raw Normal View History

2023-06-20 04:33:09 +00:00
#ifndef STAR_PERLIN_HPP
#define STAR_PERLIN_HPP
#include "StarJson.hpp"
#include "StarBiMap.hpp"
#include "StarInterpolation.hpp"
#include "StarRandom.hpp"
namespace Star {
STAR_EXCEPTION(PerlinException, StarException);
enum class PerlinType {
Uninitialized,
Perlin,
Billow,
RidgedMulti
};
extern EnumMap<PerlinType> const PerlinTypeNames;
int const PerlinSampleSize = 512;
template <typename Float>
class Perlin {
public:
// Default constructed perlin noise is uninitialized and cannot be queried.
Perlin();
Perlin(unsigned octaves, Float freq, Float amp, Float bias, Float alpha, Float beta, uint64_t seed);
Perlin(PerlinType type, unsigned octaves, Float freq, Float amp, Float bias, Float alpha, Float beta, uint64_t seed);
Perlin(Json const& config, uint64_t seed);
explicit Perlin(Json const& json);
Perlin(Perlin const& perlin);
Perlin(Perlin&& perlin);
Perlin& operator=(Perlin const& perlin);
Perlin& operator=(Perlin&& perlin);
Float get(Float x) const;
Float get(Float x, Float y) const;
Float get(Float x, Float y, Float z) const;
PerlinType type() const;
unsigned octaves() const;
Float frequency() const;
Float amplitude() const;
Float bias() const;
Float alpha() const;
Float beta() const;
Json toJson() const;
private:
static Float s_curve(Float t);
static void setup(Float v, int& b0, int& b1, Float& r0, Float& r1);
static Float at2(Float* q, Float rx, Float ry);
static Float at3(Float* q, Float rx, Float ry, Float rz);
Float noise1(Float arg) const;
Float noise2(Float vec[2]) const;
Float noise3(Float vec[3]) const;
void normalize2(Float v[2]) const;
void normalize3(Float v[3]) const;
void init(uint64_t seed);
Float perlin(Float x) const;
Float perlin(Float x, Float y) const;
Float perlin(Float x, Float y, Float z) const;
Float ridgedMulti(Float x) const;
Float ridgedMulti(Float x, Float y) const;
Float ridgedMulti(Float x, Float y, Float z) const;
Float billow(Float x) const;
Float billow(Float x, Float y) const;
Float billow(Float x, Float y, Float z) const;
PerlinType m_type;
uint64_t m_seed;
int m_octaves;
Float m_frequency;
Float m_amplitude;
Float m_bias;
Float m_alpha;
Float m_beta;
// Only used for RidgedMulti
Float m_offset;
Float m_gain;
unique_ptr<int[]> p;
unique_ptr<Float[][3]> g3;
unique_ptr<Float[][2]> g2;
unique_ptr<Float[]> g1;
};
typedef Perlin<float> PerlinF;
typedef Perlin<double> PerlinD;
template <typename Float>
Float Perlin<Float>::s_curve(Float t) {
return t * t * (3.0 - 2.0 * t);
}
template <typename Float>
void Perlin<Float>::setup(Float v, int& b0, int& b1, Float& r0, Float& r1) {
int iv = floor(v);
Float fv = v - iv;
b0 = iv & (PerlinSampleSize - 1);
b1 = (iv + 1) & (PerlinSampleSize - 1);
r0 = fv;
r1 = fv - 1.0;
}
template <typename Float>
Float Perlin<Float>::at2(Float* q, Float rx, Float ry) {
return rx * q[0] + ry * q[1];
}
template <typename Float>
Float Perlin<Float>::at3(Float* q, Float rx, Float ry, Float rz) {
return rx * q[0] + ry * q[1] + rz * q[2];
}
template <typename Float>
Perlin<Float>::Perlin() {
m_type = PerlinType::Uninitialized;
m_alpha = 0;
m_amplitude = 0;
m_frequency = 0;
m_seed = 0;
m_gain = 0;
m_beta = 0;
m_offset = 0;
m_bias = 0;
m_octaves = 0;
}
template <typename Float>
Perlin<Float>::Perlin(unsigned octaves, Float freq, Float amp, Float bias, Float alpha, Float beta, uint64_t seed) {
m_type = PerlinType::Perlin;
m_seed = seed;
m_octaves = octaves;
m_frequency = freq;
m_amplitude = amp;
m_bias = bias;
m_alpha = alpha;
m_beta = beta;
// TODO: These ought to be configurable
m_offset = 1.0;
m_gain = 2.0;
init(m_seed);
}
template <typename Float>
Perlin<Float>::Perlin(PerlinType type, unsigned octaves, Float freq, Float amp, Float bias, Float alpha, Float beta, uint64_t seed) {
m_type = type;
m_seed = seed;
m_octaves = octaves;
m_frequency = freq;
m_amplitude = amp;
m_bias = bias;
m_alpha = alpha;
m_beta = beta;
// TODO: These ought to be configurable
m_offset = 1.0;
m_gain = 2.0;
init(m_seed);
}
template <typename Float>
Perlin<Float>::Perlin(Json const& config, uint64_t seed)
: Perlin(config.set("seed", seed)) {}
template <typename Float>
Perlin<Float>::Perlin(Json const& json) {
m_seed = json.getUInt("seed");
m_octaves = json.getInt("octaves", 1);
m_frequency = json.getDouble("frequency", 1.0);
m_amplitude = json.getDouble("amplitude", 1.0);
m_bias = json.getDouble("bias", 0.0);
m_alpha = json.getDouble("alpha", 2.0);
m_beta = json.getDouble("beta", 2.0);
m_offset = json.getDouble("offset", 1.0);
m_gain = json.getDouble("gain", 2.0);
m_type = PerlinTypeNames.getLeft(json.getString("type"));
init(m_seed);
}
template <typename Float>
Perlin<Float>::Perlin(Perlin const& perlin) {
*this = perlin;
}
template <typename Float>
Perlin<Float>::Perlin(Perlin&& perlin) {
*this = move(perlin);
}
template <typename Float>
Perlin<Float>& Perlin<Float>::operator=(Perlin const& perlin) {
if (perlin.m_type == PerlinType::Uninitialized) {
m_type = PerlinType::Uninitialized;
p.reset();
g3.reset();
g2.reset();
g1.reset();
} else if (this != &perlin) {
m_type = perlin.m_type;
m_seed = perlin.m_seed;
m_octaves = perlin.m_octaves;
m_frequency = perlin.m_frequency;
m_amplitude = perlin.m_amplitude;
m_bias = perlin.m_bias;
m_alpha = perlin.m_alpha;
m_beta = perlin.m_beta;
m_offset = perlin.m_offset;
m_gain = perlin.m_gain;
p.reset(new int[PerlinSampleSize + PerlinSampleSize + 2]);
g3.reset(new Float[PerlinSampleSize + PerlinSampleSize + 2][3]);
g2.reset(new Float[PerlinSampleSize + PerlinSampleSize + 2][2]);
g1.reset(new Float[PerlinSampleSize + PerlinSampleSize + 2]);
std::memcpy(p.get(), perlin.p.get(), (PerlinSampleSize + PerlinSampleSize + 2) * sizeof(int));
std::memcpy(g3.get(), perlin.g3.get(), (PerlinSampleSize + PerlinSampleSize + 2) * sizeof(Float) * 3);
std::memcpy(g2.get(), perlin.g2.get(), (PerlinSampleSize + PerlinSampleSize + 2) * sizeof(Float) * 2);
std::memcpy(g1.get(), perlin.g1.get(), (PerlinSampleSize + PerlinSampleSize + 2) * sizeof(Float));
}
return *this;
}
template <typename Float>
Perlin<Float>& Perlin<Float>::operator=(Perlin&& perlin) {
m_type = perlin.m_type;
m_seed = perlin.m_seed;
m_octaves = perlin.m_octaves;
m_frequency = perlin.m_frequency;
m_amplitude = perlin.m_amplitude;
m_bias = perlin.m_bias;
m_alpha = perlin.m_alpha;
m_beta = perlin.m_beta;
m_offset = perlin.m_offset;
m_gain = perlin.m_gain;
p = move(perlin.p);
g3 = move(perlin.g3);
g2 = move(perlin.g2);
g1 = move(perlin.g1);
return *this;
}
template <typename Float>
Float Perlin<Float>::get(Float x) const {
switch (m_type) {
case PerlinType::Perlin:
return perlin(x);
case PerlinType::Billow:
return billow(x);
case PerlinType::RidgedMulti:
return ridgedMulti(x);
default:
throw PerlinException("::get called on uninitialized Perlin");
}
}
template <typename Float>
Float Perlin<Float>::get(Float x, Float y) const {
switch (m_type) {
case PerlinType::Perlin:
return perlin(x, y);
case PerlinType::Billow:
return billow(x, y);
case PerlinType::RidgedMulti:
return ridgedMulti(x, y);
default:
throw PerlinException("::get called on uninitialized Perlin");
}
}
template <typename Float>
Float Perlin<Float>::get(Float x, Float y, Float z) const {
switch (m_type) {
case PerlinType::Perlin:
return perlin(x, y, z);
case PerlinType::Billow:
return billow(x, y, z);
case PerlinType::RidgedMulti:
return ridgedMulti(x, y, z);
default:
throw PerlinException("::get called on uninitialized Perlin");
}
}
template <typename Float>
PerlinType Perlin<Float>::type() const {
return m_type;
}
template <typename Float>
unsigned Perlin<Float>::octaves() const {
return m_octaves;
}
template <typename Float>
Float Perlin<Float>::frequency() const {
return m_frequency;
}
template <typename Float>
Float Perlin<Float>::amplitude() const {
return m_amplitude;
}
template <typename Float>
Float Perlin<Float>::bias() const {
return m_bias;
}
template <typename Float>
Float Perlin<Float>::alpha() const {
return m_alpha;
}
template <typename Float>
Float Perlin<Float>::beta() const {
return m_beta;
}
template <typename Float>
Json Perlin<Float>::toJson() const {
return JsonObject{
{"seed", m_seed},
{"octaves", m_octaves},
{"frequency", m_frequency},
{"amplitude", m_amplitude},
{"bias", m_bias},
{"alpha", m_alpha},
{"beta", m_beta},
{"offset", m_offset},
{"gain", m_gain},
{"type", PerlinTypeNames.getRight(m_type)}
};
}
template <typename Float>
inline Float Perlin<Float>::noise1(Float arg) const {
int bx0, bx1;
Float rx0, rx1, sx, u, v;
setup(arg, bx0, bx1, rx0, rx1);
sx = s_curve(rx0);
u = rx0 * g1[p[bx0]];
v = rx1 * g1[p[bx1]];
return (lerp(sx, u, v));
}
template <typename Float>
inline Float Perlin<Float>::noise2(Float vec[2]) const {
int bx0, bx1, by0, by1, b00, b10, b01, b11;
Float rx0, rx1, ry0, ry1, sx, sy, a, b, u, v;
int i, j;
setup(vec[0], bx0, bx1, rx0, rx1);
setup(vec[1], by0, by1, ry0, ry1);
i = p[bx0];
j = p[bx1];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
sx = s_curve(rx0);
sy = s_curve(ry0);
u = at2(g2[b00], rx0, ry0);
v = at2(g2[b10], rx1, ry0);
a = lerp(sx, u, v);
u = at2(g2[b01], rx0, ry1);
v = at2(g2[b11], rx1, ry1);
b = lerp(sx, u, v);
return lerp(sy, a, b);
}
template <typename Float>
inline Float Perlin<Float>::noise3(Float vec[3]) const {
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
Float rx0, rx1, ry0, ry1, rz0, rz1, sx, sy, sz, a, b, c, d, u, v;
int i, j;
setup(vec[0], bx0, bx1, rx0, rx1);
setup(vec[1], by0, by1, ry0, ry1);
setup(vec[2], bz0, bz1, rz0, rz1);
i = p[bx0];
j = p[bx1];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
sx = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
u = at3(g3[b00 + bz0], rx0, ry0, rz0);
v = at3(g3[b10 + bz0], rx1, ry0, rz0);
a = lerp(sx, u, v);
u = at3(g3[b01 + bz0], rx0, ry1, rz0);
v = at3(g3[b11 + bz0], rx1, ry1, rz0);
b = lerp(sx, u, v);
c = lerp(sy, a, b);
u = at3(g3[b00 + bz1], rx0, ry0, rz1);
v = at3(g3[b10 + bz1], rx1, ry0, rz1);
a = lerp(sx, u, v);
u = at3(g3[b01 + bz1], rx0, ry1, rz1);
v = at3(g3[b11 + bz1], rx1, ry1, rz1);
b = lerp(sx, u, v);
d = lerp(sy, a, b);
return lerp(sz, c, d);
}
template <typename Float>
void Perlin<Float>::normalize2(Float v[2]) const {
Float s;
s = sqrt(v[0] * v[0] + v[1] * v[1]);
if (s == 0.0f) {
v[0] = 1.0f;
v[1] = 0.0f;
} else {
v[0] = v[0] / s;
v[1] = v[1] / s;
}
}
template <typename Float>
void Perlin<Float>::normalize3(Float v[3]) const {
Float s;
s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
if (s == 0.0f) {
v[0] = 1.0f;
v[1] = 0.0f;
v[2] = 0.0f;
} else {
v[0] = v[0] / s;
v[1] = v[1] / s;
v[2] = v[2] / s;
}
}
template <typename Float>
void Perlin<Float>::init(uint64_t seed) {
RandomSource randomSource(seed);
p.reset(new int[PerlinSampleSize + PerlinSampleSize + 2]);
g3.reset(new Float[PerlinSampleSize + PerlinSampleSize + 2][3]);
g2.reset(new Float[PerlinSampleSize + PerlinSampleSize + 2][2]);
g1.reset(new Float[PerlinSampleSize + PerlinSampleSize + 2]);
int i, j, k;
for (i = 0; i < PerlinSampleSize; i++) {
p[i] = i;
g1[i] = (Float)(randomSource.randInt(-PerlinSampleSize, PerlinSampleSize)) / PerlinSampleSize;
for (j = 0; j < 2; j++)
g2[i][j] = (Float)(randomSource.randInt(-PerlinSampleSize, PerlinSampleSize)) / PerlinSampleSize;
normalize2(g2[i]);
for (j = 0; j < 3; j++)
g3[i][j] = (Float)(randomSource.randInt(-PerlinSampleSize, PerlinSampleSize)) / PerlinSampleSize;
normalize3(g3[i]);
}
while (--i) {
k = p[i];
p[i] = p[j = randomSource.randUInt(PerlinSampleSize - 1)];
p[j] = k;
}
for (i = 0; i < PerlinSampleSize + 2; i++) {
p[PerlinSampleSize + i] = p[i];
g1[PerlinSampleSize + i] = g1[i];
for (j = 0; j < 2; j++)
g2[PerlinSampleSize + i][j] = g2[i][j];
for (j = 0; j < 3; j++)
g3[PerlinSampleSize + i][j] = g3[i][j];
}
}
template <typename Float>
inline Float Perlin<Float>::perlin(Float x) const {
int i;
Float val, sum = 0;
Float p, scale = 1;
p = x * m_frequency;
for (i = 0; i < m_octaves; i++) {
val = noise1(p);
sum += val / scale;
scale *= m_alpha;
p *= m_beta;
}
return sum * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::perlin(Float x, Float y) const {
int i;
Float val, sum = 0;
Float p[2], scale = 1;
p[0] = x * m_frequency;
p[1] = y * m_frequency;
for (i = 0; i < m_octaves; i++) {
val = noise2(p);
sum += val / scale;
scale *= m_alpha;
p[0] *= m_beta;
p[1] *= m_beta;
}
return sum * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::perlin(Float x, Float y, Float z) const {
int i;
Float val, sum = 0;
Float p[3], scale = 1;
p[0] = x * m_frequency;
p[1] = y * m_frequency;
p[2] = z * m_frequency;
for (i = 0; i < m_octaves; i++) {
val = noise3(p);
sum += val / scale;
scale *= m_alpha;
p[0] *= m_beta;
p[1] *= m_beta;
p[2] *= m_beta;
}
return sum * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::ridgedMulti(Float x) const {
Float val, sum = 0;
Float scale = 1;
Float weight = 1.0;
x *= m_frequency;
for (int i = 0; i < m_octaves; ++i) {
val = noise1(x);
val = m_offset - fabs(val);
val *= val;
val *= weight;
weight = clamp<Float>(val * m_gain, 0.0, 1.0);
sum += val / scale;
scale *= m_alpha;
x *= m_beta;
}
return ((sum * 1.25) - 1.0) * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::ridgedMulti(Float x, Float y) const {
Float val, sum = 0;
Float p[2], scale = 1;
Float weight = 1.0;
p[0] = x * m_frequency;
p[1] = y * m_frequency;
for (int i = 0; i < m_octaves; ++i) {
val = noise2(p);
val = m_offset - fabs(val);
val *= val;
val *= weight;
weight = clamp<Float>(val * m_gain, 0.0, 1.0);
sum += val / scale;
scale *= m_alpha;
p[0] *= m_beta;
p[1] *= m_beta;
}
return ((sum * 1.25) - 1.0) * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::ridgedMulti(Float x, Float y, Float z) const {
Float val, sum = 0;
Float p[3], scale = 1;
Float weight = 1.0;
p[0] = x * m_frequency;
p[1] = y * m_frequency;
p[2] = z * m_frequency;
for (int i = 0; i < m_octaves; ++i) {
val = noise3(p);
val = m_offset - fabs(val);
val *= val;
val *= weight;
weight = clamp<Float>(val * m_gain, 0.0, 1.0);
sum += val / scale;
scale *= m_alpha;
p[0] *= m_beta;
p[1] *= m_beta;
p[2] *= m_beta;
}
return ((sum * 1.25) - 1.0) * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::billow(Float x) const {
Float val, sum = 0;
Float p, scale = 1;
p = x * m_frequency;
for (int i = 0; i < m_octaves; i++) {
val = noise1(p);
val = 2.0 * fabs(val) - 1.0;
sum += val / scale;
scale *= m_alpha;
p *= m_beta;
}
return (sum + 0.5) * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::billow(Float x, Float y) const {
Float val, sum = 0;
Float p[2], scale = 1;
p[0] = x * m_frequency;
p[1] = y * m_frequency;
for (int i = 0; i < m_octaves; i++) {
val = noise2(p);
val = 2.0 * fabs(val) - 1.0;
sum += val / scale;
scale *= m_alpha;
p[0] *= m_beta;
p[1] *= m_beta;
}
return (sum + 0.5) * m_amplitude + m_bias;
}
template <typename Float>
inline Float Perlin<Float>::billow(Float x, Float y, Float z) const {
Float val, sum = 0;
Float p[3], scale = 1;
p[0] = x * m_frequency;
p[1] = y * m_frequency;
p[2] = z * m_frequency;
for (int i = 0; i < m_octaves; i++) {
val = noise3(p);
val = 2.0 * fabs(val) - 1.0;
sum += val / scale;
scale *= m_alpha;
p[0] *= m_beta;
p[1] *= m_beta;
p[2] *= m_beta;
}
return (sum + 0.5) * m_amplitude + m_bias;
}
}
#endif